首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The growth of submerged macrophytes in softwater lakes is often assumed to be carbon limited. Isoetid species are well adapted to grow at low carbon availability and therefore commonly dominate the submerged macrophyte vegetation in softwater lakes. In many such lakes, however, large‐scale invasions of fast‐growing elodeid species, replacing the isoetid vegetation, have been observed. 2. In a laboratory experiment, we tested how rising aquatic carbon availability, in interaction with different densities of the isoetid Littorella uniflora, affected the growth (and thereby the potential invasion success) of the elodeid Myriophyllum alterniflorum. For this purpose, the growth of M. alterniflorum was determined at a combination of three concentrations of dissolved CO2 (15, 90, 200 μmol L?1) and three densities of L. uniflora (0, 553, 1775 plants m?2). 3. At an ambient CO2 of 15 μmol L?1, M. alterniflorum could not sustain itself, whereas at raised CO2 concentrations, growth became positive and increased with higher CO2 availability. 4. The presence of L. uniflora, independent of its density, reduced the growth of M. alterniflorum by 50%. Whether this is related to nutrient availability or other factors is not clear. 5. Despite the growth reduction of M. alterniflorum by L. uniflora, at CO2 ≥90 μmol L?1, L. uniflora was still overgrown by M. alterniflorum. This may imply that, in field situations, M. alterniflorum can invade softwater systems with relatively high CO2 availability, even in the presence of dense stands of L. uniflora.  相似文献   

2.
1. Despite real improvement in the water quality of many previously eutrophic lakes, the recovery of submerged vegetation has been poor. This lack of recovery is possibly caused by the accumulation of organic matter on the top layer of the sediment, which is produced under eutrophic conditions. Hence, our objective was to study the combined effects of quantity and lability of sediment organic matter on the biomass of Echinodorus repens and Littorella uniflora and on the force required to uproot plants of L. uniflora. 2. Lake sediments, rich in organic matter, were collected from four lakes, two with healthy populations of isoetids and two from which isoetids had disappeared. The four lake sediments were mixed with sand to prepare a range of experimental sediments that differed in quantity and lability of sediment organic matter. Two isoetid species, E. repens and L. uniflora, were grown in these sediments for 8 weeks. Sediment quality parameters, including elemental composition, nutrient availability and mineralisation rates, were determined on the raw sources of sediment from the lakes. Porewater and surface water were analysed for the chemical composition in all mixtures. At the end of the experiment, plants were harvested and their biomass, tissue nutrient concentration and (for L. uniflora) uprooting force were measured. 3. For both species, all plants survived and showed no signs of stress on all types of sediment. The biomass of E. repens increased as the fraction of organic matter was increased (from 6 to 39% of organic content, depending upon sediment type). However, in some of the sediment types, a higher fraction of organic matter led to a decline in biomass. The biomass of L. uniflora was less responsive to organic content and was decreased significantly only when the least labile sediment source was used to create the gradient of organic matter. The increase in shoot biomass for both species was closely related to higher CO2 concentrations in the porewater of the sediment. The force required to uproot L. uniflora plants over a range of sediment organic matter fitted a Gaussian model; it reached a maximum at around 15% organic matter and declined significantly above that. 4. Increasing organic matter content of the sediment increased the biomass of isoetid plants, as the positive effects of higher CO2 production outweighed the negative effects of low oxygen concentration in more (labile) organic sediments. However, sediment organic matter can adversely affect isoetid survival by promoting the uprooting of plants.  相似文献   

3.
1. It has been hypothesised that the symbiosis with arbuscular mycorrhizal fungi (AMF) leads to a higher uptake of phosphorus (P) and nitrogen (N) in aquatic plants, but it has never been shown experimentally without the use of fungicides. In particular, the symbiosis may be important for nutrient uptake by isoetids in oligotrophic lakes, where low concentrations of inorganic N and P both in the water and in the sediment limit the growth of plants and where symbiosis facilitates the uptake of nutrients from the sediment. 2. Plants of the isoetid Littorella uniflora were propagated under the sterile conditions without an AMF infection. The plants were then grown for 60 days with and without re‐infection by AMF, and with either high (150 μm ) or low (ambient concentration approximately 15 μm ) CO2 concentration. 3. The study proved that the symbiosis between AMF and L. uniflora had a positive impact on the retention of N and P in the plants at very low nutrient concentrations in the water and on biomass development. Shoot biomass and standing stocks of both P and N were significantly higher in re‐infected plants. 4. Raised CO2 concentration resulted in a fivefold increase in hyphal infection, but had no impact on the number of arbuscules and vesicles in the cross sections. There were significantly higher biomass and lower tissue P and N concentrations in the plants from high CO2 treatments. This resulted in similar standing stocks of P and N in plants from low and high CO2 treatments. 5. The results from this study showed that the symbiosis between AMF and L. uniflora is an important adaptation enabling isoetids to grow on nutrient‐poor sediments in oligotrophic lakes.  相似文献   

4.
1. Oligotrophic softwater lakes represent a special type of aquatic ecosystem with unique plant communities where generalisations from other aquatic plant communities to rising CO2 in the water column may not apply. 2. In the present study, we set up large in situ mesocosms and supporting laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field and the laboratory did not show any significant release of nutrients to the water column from plants or sediments at any of the light or CO2 treatments. However, mats of epiphytic algae developed from the beginning of June to late September and caused a light reduction for the isoetid vegetation. 5. Increasing CO2 concentrations in the water column may over time potentially result in a change in soft water plant communities.  相似文献   

5.
6.
CAM-like photosynthesis was found in the isoetid aquatic plantsLittorella uniflora andIsoetes lacustris, but not in the isoetid speciesLobelia dortmanna or in the elodeidElodea canadensis. Of the taxa studied, the first three are known to utilize sediment-borne CO2, whereasElodea is dependent on bicarbonate.  相似文献   

7.
Historical data from the 1930s were compared with new data gathered during the 2000s to evaluate the effects of increased numbers of larger stature submersed species (both elodeids and characeans) on resident isoetid communities. The cover and species richness of submersed species were assessed in 23 seepage lakes in northwestern Wisconsin, USA, using randomly located 1 m × 1 m plots. Water clarity, conductivity and residential land use were determined on a whole-lake basis and the sediment type and water depth were recorded at each plot. The probability of elodeids or characeans occurring in isoetid plots increased with the number of elodeids and characeans gained by a lake since the 1930s, with additions ranging from two to 15 species per lake. However, not all species were equally likely to co-occur with isoetids. Six elodeid species (Najas flexilis, Najas gracillima, Potamogeton gramineus, Potamogeton pusillus, Potamogeton spirillus and Vallisneria americana) along with Chara spp. were the most frequent isoetid associates, while other species that were common in the lakes, such as Elodea canadensis and Potamogeton robbinsii, were less frequent in isoetid plots. The lake-wide proportion of isoetid plots colonized by elodeids or characeans ranged from 5% to 100%, with increasing conductivity and total elodeids (plus Chara spp. and Nitella spp.) the strongest predictors of this colonization. Approximately half (49.6%) of all isoetid plots sampled had elodeids or characeans present (39.2% elodeids, 7.4% elodeids and characeans, 3.0% characeans), and isoetid cover and species richness were lower when these larger stature species were present. The risks this colonization poses for the long-term viability of isoetid species appeared to depend on multiple factors, including whole-lake characteristics, opportunities for refuge, and connections among regional isoetid populations. There was evidence of a time lag between the introduction of elodeid or characean species to a lake and invasion of isoetid plots within the lake, a process that deserves further study.  相似文献   

8.
1. The impact of groundwater seepage on the growth of submerged macrophytes was investigated in experiments on the isoetid Littorella uniflora and the elodeid Myriophyllum alterniflorum both in the laboratory and in the field. Isoetids rely mostly on sediment‐derived CO2 and nutrients via root uptake, whereas elodeids acquire their inorganic carbon and nutrients from the water column. We thus hypothesised that L. uniflora would respond positively to seeping ground water as it should improve both CO2 and nutrient supply. 2. Laboratory experiments were conducted by percolating vegetated cores containing natural sediment or technical sand with artificial ground water of high CO2 concentrations and with either high or low levels of nutrients. Field experiments were conducted in the oligotrophic Lake Hampen, Denmark, with custom‐built seepage‐growth chambers that permitted a near‐natural flow‐through of seeping ground water. Chambers with a solid bottom, and thus no flow‐through of seeping ground water, served as controls in both laboratory and field experiments. In the field, seepage chambers were installed at a site with relatively high seepage fluxes (ground water from forest catchment), at a site with much lower seepage fluxes but with higher nutrient concentrations (ground water from agricultural catchment) and at a reference site with no net discharge or recharge of ground water. 3. Positive growth responses were observed in the field at transects with high groundwater discharge compared to the control chambers with no seepage. No growth response was observed at the reference transect with low or alternating direction of groundwater seepage. The growth rates of L. uniflora in the field were significantly higher in seepage treatments compared to control treatments, and final plant mass was up to 70% higher than that for plants where seepage was excluded. In areas with high groundwater discharge, a strong positive correlation was found between groundwater seepage fluxes, growth rates, and final plant mass for L. uniflora, while there was no such relationship at the reference transect. The growth of M. alterniflorum was also significantly affected by groundwater seepage, but to a lesser degree than L. uniflora. Laboratory experiments generally showed the same trend for both L. uniflora and M. alterniflorum, and the positive influence of seeping ground water was apparently related to increased inorganic carbon supply and, to a lesser degree, improved nutrient availability. 4. Groundwater discharge results in enhanced growth of isoetids and to some extent elodeids inhabiting a groundwater‐fed softwater lake. We propose that the shallow dense vegetation present where most of the discharge takes place acts as a biological filter that retains nutrients that otherwise would end up in the water column and could result in increased algal growth.  相似文献   

9.
1. Arbuscular mycorrhizal fungi (AMF) commonly colonise isoetid species inhabiting oxygenated sediments in oligotrophic lakes but are usually absent in other submerged plants. We hypothesised that organic enrichment of oligotrophic lake sediments reduces AMF colonisation and hyphal growth because of sediment O2 depletion and low carbon supply from stressed host plants. 2. We added organic matter to sediments inhabited by isoetids and measured pore‐water chemistry (dissolved O2, inorganic carbon, Fe2+ and ), colonisation intensity of roots and hyphal density after 135 days of exposure. 3. Addition of organic matter reduced AMF colonisation of roots of both Lobelia dortmanna and Littorella uniflora, and high additions stressed the plants. Even small additions of organic matter almost stopped AMF colonisation of initially un‐colonised L. uniflora, though without reducing plant growth. Mean hyphal density in sediments was high (6 and 15 m cm?3) and comparable with that in terrestrial soils (2–40 m cm?3). Hyphal density was low in the upper 1 cm of isoetid sediments, high in the main root zone between 1 and 8 cm and positively related to root density. Hyphal surface area exceeded root surface area by 1.7–3.2 times. 4. We conclude that AMF efficiently colonise isoetids in oligotrophic sediments and form extensive hyphal networks. Small additions of organic matter to sediments induce sediment anoxia and reduce AMF colonisation of roots but cause no apparent plant stress. High organic addition induces night‐time anoxia in both the sediment and the plant tissue. Tissue anoxia reduces root growth and AMF colonisation, probably because of restricted translocation of nutrient ions and organic solutes between roots and leaves. Isoetids should rely on AMF for P uptake on nutrient‐poor mineral sediments but are capable of growing without AMF on organic sediments.  相似文献   

10.
1. Strong vertical gradients in light, water temperature, oxygen, algal concentration and predator encounters during summer in stratified lakes may influence patterns of depth selection in crustacean zooplankton, especially Daphnia species. 2. To test how crustacean depth selection varies among lakes along a gradient of catchment disturbance by recent residential development and land use change, we calculated the weighted mean depth distribution of the biomass of crustaceans by day and night in eight nutrient‐poor boreal lakes. 3. Generally, the greatest biomass of crustaceans was located at the metalimnion or at the lower boundary of the euphotic zone during thermal stratification in July. The crustacean zooplankton avoided warm surface layers and tended to stay in colder deep waters by both day and night. They also remained at greater depths in lakes with a more extensive euphotic zone. 4. There was some evidence of upward nocturnal migrations of large Daphnia and copepods in some lakes, and one case of downward migration in a lake inhabited by chaoborid larvae. 5. Multivariate regression trees (MRT) were used to cluster crustaceans and Daphnia species in homogeneous groups based on lake natural and disturbance factors. For crustaceans, the depth of the euphotic zone, the sampling depth (epilimnion, metalimnion and hypolimnion), time (day or night) of sampling and the biomass of chlorophyll a were the main driving factors. For Daphnia species, the drainage area, the sampling depth, the cleared land surface area within the catchment and the concentration of total dissolved phosphorus were the main factors.  相似文献   

11.
The physiological and photosynthetic responses of Littorella uniflora (L.) Ascherson, an amphibious macrophyte of isoetid life form, to rapid and prolonged emersion onto dry land, was studied at a reservoir. Water relations were little affected in the short term, but declining water potential and turgor pressure indicated water stress after flowering. High leaf lacunal CO2 concentrations suggested continued CO2 uptake from sediments. In contrast, a switch from Crassulacean acid metabolism (CAM) to C3 photosynthesis was indicated by much lower levels of ΔH+ (down minus dusk titratable acidity) and phosphoenolpyruvate carboxylase (PEPC) activity in new terrestrial leaves, 7–8‐fold higher activity of ribulose bisphosphate carboxylase oxygenase (Rubisco), and increased chlorophyll and soluble protein contents. Accumulated nitrate and amino acid pools were depleted, whereas storage of carbohydrates as soluble sugars, fructan and starch increased. Plant carbon and nitrogen isotope ratios (δ13C and δ15N) declined, perhaps reflecting changes in C fixation processes, N metabolism, and source C and N. In leaves of plants grown half‐emersed for an extended period, contrasting activities of PEPC and Rubisco were found in submersed and emersed portions. Overall, L. uniflora showed considerable phenotypic plasticity, yet seemed to remain poised for re‐submersion; these characteristics could be adaptive in the unpredictable water margin habitat.  相似文献   

12.
13.
Mallee, a shrub-eucalypt association, once covered large areas of the cereal growing land in Western Australia. The hydrologic consequences of land development have been more than a doubling of water yield and increased deep drainage beyond the plant-root zone. The latter has led to large areas of soil salinization. The uncleared catchment studied was covered with mallee vegetation (65%) and a heath association (35%). Over 12 years of measurement, runoff from the catchment has averaged 0.025 mm per annum with a mean annual rainfall of 376 mm. Half of the runoff resulted from two major events totalling 0.15 mm. Since there was no evidence of groundwater accession in the catchment, the rainfall was balanced by evapotranspiration. Despite virtually no runoff from the whole catchment, considerable internal redistribution of surface water occurred, with localized overland flow in some areas as high as 7.7 mm from 30.9 mm of rainfall in one day. Rainfall penetrated rapidly under the mallee vegetation and the rate of penetration observed could not be achieved solely through the soil even if there was saturated flow. A typical stand of native mallee trees (Eucalyptus pileata and E. eremophila) in the catchment effectively redistributed 8% of the annual rain falling on the stand with 3% lost as interception and 5% going to stemflow. However, on an individual tree basis some 15% of the rain falling on the canopy was lost as intercepted water and 25% ran down the stem. The stemflow caused saturated conditions around the bole of the mallee and dye tracing showed that the water penetrated the soil via the annular pathways of the soil-root interface. Roots of mallee trees were found at 28 m depth and it is postulated that the mallees are adapted to the semi-arid environment by virtue of their ability to store water deep in the soil profile for use during the dry summer months.  相似文献   

14.
We examined the ability of lake and landscape features to predict a variety of macrophyte cover metrics using 54 north temperate lakes. We quantified submersed cover, emergent cover, floating leaf cover, Eurasian watermilfoil cover and total macrophyte cover. Measured lake features included lake physio-chemical and morphometric variables and landscape features included hydrologic, catchment and land use/cover variables. Univariate regression analyses demonstrated that these macrophyte cover metrics are predicted by a wide range of predictor variables, most commonly by: Secchi disk depth, maximum or mean depth, catchment morphometry, road density and the proportion of urban or agricultural land use/cover in the riparian zone or catchment (r2 = 0.06–0.46). Using a combination of lake and landscape features in multiple regressions, we were able to explain 29–55% of the variation in macrophyte cover metrics. Total macrophyte cover and submersed cover were related to Secchi disk depth and mean depth, whereas the remaining metrics were best predicted by including at least one land use/cover variable (road density, proportion local catchment agriculture land use/cover, proportion cumulative catchment urban land use/cover, or proportion riparian agriculture land use/cover). The two main conclusions from our research are: (1) that different macrophyte growth forms and species are predicted by a different suite of variables and thus should be examined separately, and (2) that anthropogenic landscape features may override patterns in natural landscape or local features and are important in predicting present-day macrophytes in lakes.  相似文献   

15.
Adema  Erwin B.  Grootjans  Ab P. 《Plant Ecology》2003,167(1):141-149
In this paper the results are presented from a mesocosm study of the effects of typical dune slack plants on the soil solution nutrient contents. In dune slack succession, early successional species often show radial oxygen loss (ROL) whereas their successor species do not show ROL. ROL has impact on abiotic soil parameters and therefore, affect the competitiveness of both species. Mesocosms with Littorella uniflora and Carex nigra, used as respectively a ROL and a non-ROL species, showed remarkable differences in soil solution parameters. Special attention was given to nitrogen, as it is the limiting resource in dune slack succession. Mesocosms with L. uniflora showed a higher nitrate content in the soil than mesocosms with C. nigra and the control. Moreover, estimating the nitrogen balance, a significantly higher fraction of nitrogen was missing in L. uniflora (57%) than in C. nigra (5%). The enhanced nitrogen loss in mesocosms with L. uniflora could act as a positive-feedback mechanism for early successional stages that slows down the vegetation development in early stages of dune slack succession towards the more-productive later stages. The mechanism could even lead to alternative stable states in dune slack succession.  相似文献   

16.
1. Although many studies have focussed on the effects of catchment land use on lotic systems, the importance of broad (catchment) and fine (segment/reach) scale effects on stream assemblages remain poorly understood. 2. Nine biological metrics for macrophytes (498 sites), benthic macroinvertebrates (491) and fish (478) of lowland and mountain streams in four ecoregions of France and Germany were related to catchment and riparian buffer land use using partial Redundancy Analysis and Boosted Regression Trees (BRTs). 3. Lotic fauna was better correlated (mean max., r = 0.450) than flora (r = 0.277) to both scales of land use: the strongest correlations were noted for mountain streams. BRTs revealed strong non‐linear relationships between mountain assemblage metrics and land use. Correlations increased with increasing buffer lengths, suggesting the importance of near‐stream land use on biotic assemblages. 4. Several metrics changed markedly between 10–20% (mountain ecoregions) and 40–45% (lowland) of arable land use, irrespective of the buffer size. At mountain sites with >10% catchment arable land use, metric values differed between sites with <30% and sites with >30% forest in the near‐stream riparian area. 5. These findings support the role of riparian land use in catchment management; however, differences between mountain and lowland ecoregions support the need for ecoregion‐specific management.  相似文献   

17.
赵明月  赵文武  刘源鑫 《生态学报》2015,35(14):4625-4632
土地利用方式和环境因子是影响土壤粒径的重要因素,尺度不同其影响效应差异明显。研究不同尺度表层土壤粒径与土地利用、环境因子的关系对评价黄土丘陵沟壑区土壤物理性质具有积极意义。选择黄土丘陵沟壑区安塞集水区和沐浴小流域作为研究区,探讨两个尺度上表层土壤粒径含量、分布特征及其与土地利用类型和环境因子的关系。研究结果表明:(1)研究区域内表层土壤颗粒主要为砂粒和粉粒,在小流域和集水区尺度上,各粒径百分含量属于中等变异,D值为弱变异,但随着研究区由沐浴小流域变化到安塞集水区,粒径和D值的空间变异性均有所提高;(2)尺度不同,土地利用对土壤粒径的影响效应不同,在沐浴小流域不同土地利用类型的砂粒含量从高到低依次为荒草地农用地林地灌木林地园地,在集水区的变化顺序依次为荒草地灌木林地林地农用地园地,粉粒含量的次序均与砂粒相反,小流域土壤粒径分形维数D依次为灌木林地荒草地林地园地农用地,在安塞集水区为灌木林地荒草地农用地林地园地;(3)在沐浴小流域和安塞集水区,土壤颗粒分形维数与土壤砂粒、黏粒百分含量呈极显著正相关关系,与土壤粉粒百分含量呈极显著负相关关系,且砂质壤土D值高于壤土和粉壤土;(4)在沐浴小流域,植被盖度、相对海拔和坡位相对于土地利用类型、坡向和坡度对土壤粒径影响较大;而在安塞集水区植被盖度、土地利用类型和坡度对土壤粒径影响较大。  相似文献   

18.
During spring storms massive uprooting of Littorella uniflora occurred in a shallow Dutch softwater lake. The aim of this study was to test whether changes in plant morphology and sediment characteristics could explain the observed phenomenon. Uprooting was expected to occur in plants having a high shoot biomass and low root to shoot ratio (R:S), growing on sediments with a high organic matter content. Normally, uprooting of the relative buoyant L. uniflora is prevented by an extensive root system, expressed as a high R:S. This was studied by sampling floating and still rooted L. uniflora plants, as well as sediment and sediment pore water, along a gradient of increasing sediment organic matter content. Increasing organic matter content was related to increasing L. uniflora shoot biomass and consequently decreasing R:S. Furthermore, the results indicated that uprooting indeed occurred in plants growing on very organic sediments and was related to a low R:S. The increased shoot biomass on more organic sediments could be related to increased sediment pore water total inorganic carbon (TIC; mainly CO2) availability. Additionally, increased phosphorus availability could also have played a role. The disappearance of L. uniflora might lead to higher nutrient availability in the sediments. It is suggested that this could eventually promote the expansion of faster‐growing macrophytes.  相似文献   

19.
We determined the limiting climatic factors, as well as the preferred habitats, of Erica tetralix L. at the eastern limit of its distribution range in the eastern Baltic region. It was found that E. tetralix in this region is a typical bog woodland plant preferring the wettest Sphagnum‐rich sites. Northern Atlantic wet heath fragments, base‐rich fens and species‐rich Nardus grasslands were other habitats for the species. The species composition in E. tetralix habitats resembled that found in appropriate habitats within its main distribution range, although the habitats in the eastern Baltic region lack many Atlantic floristic elements characteristic of wet heath. A generalised linear model describing the climatic niche of E. tetralix in Latvia suggests that mild winters, which exhibit a combination of a shallow maximum depth of soil freezing and a large number of days when the air temperature exceeds 0°C, as well as abundant annual and winter precipitation, are the main factors allowing the presence of E. tetralix in Latvia. The climate parameters at the eastern limit of the species’ distribution range are consistent with those recorded as being suitable for E. tetralix elsewhere. Our results reveal a strong relationship between oceanity and the distribution of E. tetralix. The climatic niche model suggests more climatically suitable areas in the Coastal Lowland geobotanical region where the species could potentially be found, most likely in bog woodlands. The future prospects to restore open areas of northern Atlantic wet heath with E. tetralix in Latvia are poor due to the decline in traditional land‐use; these areas have turned into bog woodlands or been converted into agricultural land.  相似文献   

20.
1. Littorella uniflora and Lobelia dortmanna are prominent small rosette species in nutrient‐poor, soft‐water lakes because of efficient root exchange of CO2 and O2. We hypothesise that higher gas exchange across the leaves of L. uniflora than of L. dortmanna ensures O2 uptake from water and underlies its greater tolerance to sediment anoxia following organic enrichment. 2. We studied plant response to varying sediment O2 demand and biogeochemistry by measuring photosynthesis, gas exchange across leaves and O2 dynamics in plants during long‐term laboratory and field studies. Frequent non‐destructive sampling of sediment pore water was used to track changes in sediment biogeochemistry. 3. Addition of organic matter triggered O2 depletion and accumulation of , Fe2+ and CO2 in sediments. Gas exchange across leaf surfaces was 13–16 times higher for L. uniflora than for L. dortmanna. Oxygen in the leaf lacunae of L. uniflora remained above 10 kPa late at night on anoxic sediments despite organic enrichment. Leaf content of N and P of L. uniflora remained sufficient to keep up photosynthesis despite prolonged sediment anoxia, whereas nutrient content was too low for long‐term survival of L. dortmanna. 4. High gas exchange across L. uniflora leaves improves its performance and survival on anoxic sediments compared with L. dortmanna. Lobelia dortmanna uses the same gas‐tight leaves in air and water, which makes it highly susceptible to sediment anoxia but more cost‐effective in ultra‐oligotrophic environments because of slow leaf turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号