首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruau D  Ju XS  Zenke M 《Cellular immunology》2006,244(2):116-120
Dendritic cells are professional antigen presenting cells and central for establishing and maintaining immunity and immunological tolerance. They develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Dendritic cell development and function are regulated by specific cytokines, including transforming growth factor type beta1 (TGF-beta1). Our previous work demonstrated the importance of TGF-beta1 signaling for dendritic cell development and subset specification. Here, we used genome-wide gene expression profiling with DNA microarrays to investigate the activity of TGF-beta1 on gene expression in dendritic cell development. This study identified specific gene categories induced by TGF-beta1 with an impact on dendritic cell biology.  相似文献   

2.
Dendritic cells (DCs) represent antigen-presenting cell (APC) populations in lymphoid and nonlymphoid organs which are considered to play key roles in the initiation of antigen-specific T-cell proliferation. According to current knowledge, the net outcome of T-cell immune responses seems to be significantly influenced by the activation stage of antigen-presenting DCs. Several studies have shown that transforming growth factor-beta 1 (TGF-β1) inhibits in vitro activation and maturation of DCs. TGF-β1 inhibits upregulation of critical T-cell costimulatory molecules on the surface of DCs and reduces the antigen-presenting capacity of DCs. Thus, in addition to direct inhibitory effects of TGF-β1 on effector T lymphocytes, inhibitory effects of TGF-β1 at the level of APCs may critically contribute to previously characterized immunosuppressive effects of TGF-β1. In contrast to these negative regulatory effects of TGF-β1 on function and maturation of lymphoid tissue type DCs, certain subpopulations of immature DCs in nonlymphoid tissues are positively regulated by TGF-β1 signaling. In particular, epithelial-associated DC populations seem to critically require TGF-β1 stimulation for development and function. Recent studies established that TGF-β1 stimulation is absolutely required for the development of epithelial Langerhans cells (LCs) in vitro and in vivo. Furthermore, TGF-β1 seems to enhance antigen processing and costimulatory functions of epithelial LCs.  相似文献   

3.
Targeting of transforming growth factor beta (TGF-β) to the extracellular matrix (ECM) by latent TGF-β binding proteins (LTBPs) regulates the availability of TGF-β for interactions with endothelial cells during their quiescence and activation. However, the mechanisms which release TGF-β complexes from the ECM need elucidation. We find here that morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) resulted in membrane-type 1 matrix metalloproteinase (MT1-MMP) -mediated solubilization of latent TGF-β complexes from the ECM by proteolytic processing of LTBP-1. These processes required the activities of PKC and ERK1/2 signaling pathways and were coupled with markedly increased MT1-MMP expression. The functional role of MT1-MMP in LTBP-1 release was demonstrated by gene silencing using lentiviral short-hairpin RNA as well as by the inhibition with tissue inhibitors of metalloproteinases, TIMP-2 and TIMP-3. Negligible effects of TIMP-1 and uPA/plasmin system inhibitors indicated that secreted MMPs or uPA/plasmin system did not contribute to the release of LTBP-1. Current results identify MT1-MMP-mediated proteolytic processing of ECM-bound LTBP-1 as a mechanism to release latent TGF-β from the subendothelial matrix.  相似文献   

4.
5.
Epithelial–mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-β-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-β receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-β/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-β receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-β receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface.  相似文献   

6.
7.
We have previously shown that both transforming growth factor-β (TGF-β) and retinoic acid (HA) regulate the expression of cellular retinoic acid binding proteins (CRABP) I and II and TGF-β3 mRNAs in primary cultures of murine embryonic palate mesenchyreal (MEPM) cells. We now describe additional crosstalk between the RA and TGF-β signal transduction pathways—the ability of TGF-β, including the endogenous form(s), to modulate the expression of the nuclear retinoic acid receptor-β (RAR-β). Northern blot hybridization revealed that RA induced the expression of RAR-β mRNA, there being little or no detectable expression in untreated MEPM cells. Induction by 3.3 μM RA was abrogated by simultaneous treatment with TGF-β1 (5 ng/ml). TGF-β1 alone had no effect on RAR. mRNA expression. Determination of RAR-β mRNA half-life by treatment with actinomycin D indicated that TGF-β1 did not alter the stability of RAR-β mRNA. Conditioned medium (CM) from MEPM cells contained little active TGF-β protein; heat treatment of the CM dramatically increased the amount of active TGF-β as assessed by the mink lung epithelial cell bioassay. Furthermore, heat- or acid-activated CM also inhibited CRABP-I and RA-induced RAR-β expression. The effect of heat-activated conditioned medium could be abrogated with panspecific neutralizing antibodies to TGF-β, confirming that endogenous TGF-β is the biologically active factor in heat-activated CM. These results provide evidence for complex interactions between TGF-β and RA in the regulation of gene expression in embryonic palatal cells and suggest a role for endogenous TGF-β in the regulation of expression of genes encoding elements of the RA signal transduction pathway.  相似文献   

8.
Restoration of the antigen (Ag)-specific immune tolerance in an allergic environment is refractory. B cells are involved in immune regulation. Whether B cells facilitate the generation of Ag-specific immune tolerance in an allergic environment requires further investigation. This paper aims to elucidate the mechanism by which B cells restore the Ag-specific immune tolerance in an allergic environment. In this study, a B cell-deficient mouse model was created by injecting an anti-CD20 antibody. The frequency of tolerogenic dendritic cell (TolDC) was assessed by flow cytometry. The levels of cytokines were determined by enzyme-linked immunosorbent assay. The expression of thrombospondin-1 (TSP1) was assessed by quantitative real-time RT-PCR, Western blotting, and methylation-specific PCR. The results showed that B cells were required in the generation of the TGF-β-producing TolDCs in mice. B cell-derived TSP1 converted the latent TGF-β to the active TGF-β in DCs, which generated TGF-β-producing TolDCs. Exposure to IL-13 inhibited the expression of TSP1 in B cells by enhancing the TSP1 gene DNA methylation. Treating food allergy mice with Ag-specific immunotherapy and IL-13 antagonists restored the generation of TolDCs and enhanced the effect of specific immunotherapy. In conclusion, B cells play a critical role in the restoration of specific immune tolerance in an allergic environment. Blocking IL-13 in an allergic environment facilitated the generation of TolDCs and enhanced the therapeutic effect of immunotherapy.  相似文献   

9.
10.
11.
12.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that play a critical immunosuppressive role in the tumour micro-environment. Although biological research on MDSCs has made progress, the relationship between the secretion of cytokines by MDSCs and poor prognosis is not clear, and there are no criteria to measure the functional status of MDSCs. Here, we detected the mRNA expression of IL-10, IL-12, TGF-β and TNF-α in MDSCs and the levels of these cytokines in MDSC culture supernatants of patients with myelodysplastic syndromes, and quantified the functional status of MDSCs by IL-10/IL-12 ratio and TGF-β/TNF-α ratio. We found that the ratio of IL-10/IL-12 and TGF-β/TNF-α was significantly higher in higher-risk MDS than in lower-risk MDS and normal control groups. The TGF-β/TNF-α ratio in MDSCs was positively correlated with the percentage of blast cells and was negatively correlated with the percentage of CD3+CD8+ T lymphocytes. Meanwhile, the TGF-β/TNF-α ratio was higher in patients with a lower absolute neutrophil count. It suggested that MDSCs in higher-risk MDS have a stronger immunosuppressive effect and might be related to poor prognosis. Quantifying the functional status of MDSCs with IL-10/IL-12 and TGF-β/TNF-α ratio might help to evaluate the balance of cellular immunity of MDSCs in MDS.  相似文献   

13.
Laryngeal squamous cell cancer (LSCC) is a common carcinoma with high morbidity and mortality. Metastasis constitutes the major cause of death and poor prognosis among patients with LSCC. Recent evidence confirms critical function of Wnt1-inducible signaling protein 1 (WISP1) in several cancers. However, its contribution in LSCC metastasis remains unclear. Specimens of tumor tissues and adjacent normal mucosa were collected from patients with LSCC. The mRNA and protein levels were determined using quantitative real-time PCR and Western blot, respectively. RNA interference was applied to silence the expression of WISP1 and TGF-β, and recombinant adenovirus was used to overexpress WISP1 in human LSCC cell line TU212 cells. Cell invasion and migration were determined by transwell assay. High expression of WISP1 was observed in LSCC tissues, especially in those from metastatic groups. Ectopic expression of WISP1 enhanced invasion and migration of TU212 cells. On the contrary, WISP1 knockdown reduced numbers of invasive and migrated cells. Additionally, elevation of WISP1 depressed the expression of epithelial marker E-cadherin and increased levels of mesenchymal marker vimentin in TU212 cells, whereas WISP suppression yielded the opposite effects. Further analysis corroborated that WISP1 overexpression enhanced activation of TGF-β-Smad signaling by increasing expression of TGF-β1, p-Smad2, and p-Smad3, which was abrogated following WISP1 down-regulation. Moreover, TGF-β1 exposure facilitated LSCC cell invasion and migration. Notably, blockage of the TGF-β-Smad pathway by si-TGF-β overturned WISP-1-evoked epithelial-to-mesenchymal transition (EMT), and subsequent cell invasion and migration. These findings highlight the pro-metastatic function of WISP1 in LSCC by regulating cell invasion and migration via TGF-β-Smad-mediated EMT, supporting a promising invention target for LSCC therapy.  相似文献   

14.

Background

Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells.

Methodology/Principal Findings

Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC.

Conclusions

Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.  相似文献   

15.
16.
Plasminogen activator inhibitor-1 (PAI-1) is a multifunctional glycoprotein that plays a critical role in the pathogenesis of chronic kidney and cardiovascular diseases. Although transforming growth factor (TGF)-β1 is a known inducer of PAI-1, how it controls PAI-1 expression remains enigmatic. Here we investigated the mechanism underlying TGF-β1 regulation of PAI-1 in kidney tubular epithelial cells (HKC-8). Surprisingly, overexpression of Smad2 or Smad3 in HKC-8 cells blocked PAI-1 induction by TGF-β1, whereas knockdown of them sensitized the cells to TGF-β1 stimulation, suggesting that Smad signaling is not responsible for PAI-1 induction. Blockade of several TGF-β1 downstream pathways such as p38 MAPK or JNK, but not phosphatidylinositol 3-kinase/Akt and ERK1/2, only partially inhibited PAI-1 expression. TGF-β1 stimulated β-catenin activation in tubular epithelial cells, and ectopic expression of β-catenin induced PAI-1 expression, whereas inhibition of β-catenin abolished its induction. A functional T cell factor/lymphoid enhancer-binding factor-binding site was identified in the promoter region of the PAI-1 gene, which interacted with T cell factor upon β-catenin activation. Deletion or site-directed mutation of this site abolished PAI-1 response to β-catenin or TGF-β1 stimulation. Similarly, ectopic expression of Wnt1 also activated PAI-1 expression and promoter activity. In vivo, PAI-1 was induced in kidney tubular epithelia in obstructive nephropathy. Delivery of Wnt1 gene activated β-catenin and promoted PAI-1 expression after obstructive injury, whereas blockade of Wnt/β-catenin signaling by Dickkopf-1 gene inhibited PAI-1 induction. Collectively, these studies identify PAI-1 as a direct downstream target of Wnt/β-catenin signaling and demonstrate that PAI-1 induction could play a role in mediating the fibrogenic action of this signaling.  相似文献   

17.
We previously demonstrated that RhoA-dependent signaling regulates transforming growth factor-β1 (TGF-β1)-induced cytoskeletal reorganization in the human retinal pigment epithelial cell line ARPE-19. Smad pathways have also been shown to mediate TGF-β1 activity. Here, we examined what regulates Rho GTPase activity and tested whether Smad signaling cross-talks with Rho pathways during TGF-β1-induced actin rearrangement. Using small interfering RNAs, we found that NET1, the guanine nucleotide exchange factor of RhoA, is critical for TGF-β1-induced cytoskeletal reorganization, N-cadherin expression, and RhoA activation. In ARPE-19 cells lacking NET1, TGF-β1-induced stress fibers and N-cadherin expression were not observed. Interestingly, in dominant-negative Smad3-expressing or constitutively active Smad7 cells, TGF-β1 failed to induce NET1 mRNA and protein expression. Consistent with these results, both dominant-negative Smad3 and constitutively active Smad7 blocked the cytoplasmic localization of NET1 and inhibited interactions between NET1 and RhoA. Finally, we found that NET1 is a direct gene target of TGF-β1 via Smad3. Taken together, our results demonstrate that Smad3 regulates RhoA activation and cytoskeletal reorganization by controlling NET1 in TGF-β1-induced ARPE-19 cells. These data define a new role for Smad3 as a modulator of RhoA activation in the regulation of TGF-β1-induced epithelial-mesenchymal transitions.  相似文献   

18.
19.
In this study we have employed a model system comprising three groups of colon carcinoma cell lines to examine the growth-inhibitory effects of two molecular forms of transforming growth factor-β (TGF-β), TGF-β1 and TGF-β2. Aggressive, poorly differentiated colon carcinoma cells of group I did not respond to growth inhibitory effects of TGF-β1 or TGF-β2, while less aggressive, well-differentiated cells of group III displayed marked sensitivity to both TGF-β1 and TGF-β2 in monolayer culture as well as in soft agarose. One moderately well-differentiated cell line from group II which has intermediate growth characteristics failed to respond to TGF-β1 or TGF-β2, but the growth of two other cell lines in this group was inhibited. TGF-β1 and TGF-β2 were equally potent, 50% growth inhibition for responsive cell lines being observed at a concentration of 1 ng/ml (40 pM). Antiproliferative effects of TGF-β1 and TGF-β2 in responsive cell lines of groups II and III were associated with morphological alterations and enhanced, concentration-dependent secretion of carcinoembryonic antigen. Radiolabeled TGF-β1 bound to all three groups of colon carcinoma cells with high affinity (Kd between 42 and 64 pM). These data indicate for the first time a strong correlation between the degree of differentiation of colon carcinoma cell lines and sensitivity to the antiproliferative and differentiation-promoting effects of TGF-β1 and TGF-β2.  相似文献   

20.
Specific, high-affinity binding of FGF2 was evaluated in cultured skeletal muscle satellite cells from young (3- to 4-week-old) and adult (9- to 12-month-old) rats prior to the first division in culture. Specific binding of FGF2 was detected on satellite cells from young rats at 18 h postplating, the earliest time examined, but specific binding was not detectable until 42 h on satellite cells from old rats. This correlates well with the delayed entry into the cell cycle exhibited by adult satellite cells and with the ability of satellite cells from rats of these ages to proliferate in response to FGF2. Patterns of tyrosine phosphorylation in whole cell extracts, following stimulation by FGF2, indicated specific FGF2 phosphorylation of proteins of 150/145, 90, 42, and 35 kDa in cells from both age groups. Several growth factors were evaluated for their ability to stimulate early entry of adult satellite cells into the cell cycle, and none of the following growth factors were able to activate proliferation of these cells: FGF2, IGF-1, IGF-2, PDGF-BB, TGF-β1, or TGF-β2. In addition, specific binding of FGF2 to 48-h cultures of adult satellite cells was not stimulated by FGF2, IGF-1, IGF-2, PDGF-BB, or TGF-β2, and specific binding was significantly decreased (P < 0.05) by FGF2 and TGF-β2. Specific binding was significantly lower in cells treated with PDGF-BB than in cells treated with either form of IGF but was greater than in cells treated with FGF2 or TGF-β2. The results of these experiments suggest that expression of functional FGF receptors on the surface of satellite cells may represent an important step in the activation of quiescent satellite cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号