首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
重组表达猪圆环病毒2型衣壳蛋白的抗原特性分析   总被引:3,自引:0,他引:3  
将猪圆环病毒2型(PCV2 )去核定位信号衣壳蛋白(Nuclearlocalizationsignal_defectedcapsidprotein ,dCap)与谷胱甘肽_S_转移酶(GST)融合,在大肠杆菌中表达,经纯化和凝血酶剪切分别获得纯化的GST_dCap融合蛋白和dCap蛋白,Westernblot结果表明二者都能与猪抗PCV2血清发生特异性反应。dCap蛋白免疫小鼠制备的单克隆抗体,不仅能特异地与GST_dCap融合蛋白、dCap蛋白和纯化的PCV2粒子发生反应,而且能特异地与PK_15细胞内的PCV2病毒颗粒发生反应,其中抗dCap蛋白的单克隆抗体4C4、3F6和2G7具有阻止病毒感染细胞的能力。表明原核表达的dCap蛋白完全或部分正确模拟了PCV2天然衣壳蛋白的构像,PCV2衣壳蛋白存在阻止PCV2病毒感染细胞的功能性表位。同时重组PCV2dCap蛋白的获得为进一步研究Cap蛋白晶体结构和将重组的dCap蛋白作为抗原建立血清学诊断试剂及疫苗研究提供了基础  相似文献   

2.
The ATP-dependent three-strand exchange activity of the Streptococcus pneumoniae RecA protein (RecA(Sp)), like that of the Escherichia coli RecA protein (RecA(Ec)), is strongly stimulated by the single-stranded DNA-binding protein (SSB) from either E. coli (SSB(Ec)) or S. pneumoniae (SSB(Sp)). The RecA(Sp) protein differs from the RecA(Ec) protein, however, in that its ssDNA-dependent ATP hydrolysis activity is completely inhibited by SSB(Ec) or SSB(Sp) protein, apparently because these proteins displace RecA(Sp) protein from ssDNA. These results indicate that in contrast to the mechanism that has been established for the RecA(Ec) protein, SSB protein does not stimulate the RecA(Sp) protein-promoted strand exchange reaction by facilitating the formation of a presynaptic complex between the RecA(Sp) protein and the ssDNA substrate. In addition to acting presynaptically, however, it has been proposed that SSB(Ec) protein also stimulates the RecA(Ec) protein strand exchange reaction postsynaptically, by binding to the displaced single strand that is generated when the ssDNA substrate invades the homologous linear dsDNA. In the RecA(Sp) protein-promoted reaction, the stimulatory effect of SSB protein may be due entirely to this postsynaptic mechanism. The competing displacement of RecA(Sp) protein from the ssDNA substrate by SSB protein, however, appears to limit the efficiency of the strand exchange reaction (especially at high SSB protein concentrations or when SSB protein is added to the ssDNA before RecA(Sp) protein) relative to that observed under the same conditions with the RecA(Ec) protein.  相似文献   

3.
We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional RecA protein to yield presynaptic filaments. Here, electron microscopy has been used to further explore the parameters of this assembly process. The optimal extent of presynaptic filament formation required at least one RecA protein monomer per three nucleotides, high concentrations of ATP (greater than 3 mM in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein assembly.  相似文献   

4.
In situ synthesis of protein arrays   总被引:4,自引:0,他引:4  
In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.  相似文献   

5.
Kumar S  Tsai CJ  Nussinov R 《Biochemistry》2003,42(17):4864-4873
The difference between the heat (T(G)) and the cold (T(G)') denaturation temperatures defines the temperature range (T(Range)) over which the native state of a reversible two-state protein is thermodynamically stable. We have performed a correlation analysis for thermodynamic parameters in a selected data set of structurally nonhomologous single-domain reversible two-state proteins. We find that the temperature range is negatively correlated with the protein size and with the heat capacity change (DeltaC(p)) but is positively correlated with the maximal protein stability [DeltaG(T(S))]. The correlation between the temperature range and maximal protein stability becomes highly significant upon normalization of the maximal protein stability with protein size. The melting temperature (T(G)) also shows a negative correlation with protein size. Consistently, T(G) and T(G)' show opposite correlations with DeltaC(p), indicating a dependence of the T(Range) on the curvature of the protein stability curve. Substitution of proteins in our data set with their homologues and arbitrary addition or removal of a protein in the data set do not affect the outcome of our analysis. Simulations of the thermodynamic data further indicate that T(Range) is more sensitive to variations in curvature than to the slope of the protein stability curve. The hydrophobic effect in single domains is the principal reason for these observations. Our results imply that larger proteins may be stable over narrower temperature ranges and that smaller proteins may have higher melting temperatures, suggesting why protein structures often differentiate into multiple substructures with different hydrophobic cores. Our results have interesting implications for protein thermostability.  相似文献   

6.
7.
The phosphoprotein (P) gene of rabies virus (CVS strain) was cloned and expressed in bacteria. The purified protein was used as the substrate for phosphorylation by the protein kinase(s) present in cell extract prepared from rat brain. Two distinct types of protein kinases, staurosporin sensitive and heparin sensitive, were found to phosphorylate the P protein in vitro by the cell extract. Interestingly, the heparin-sensitive kinase was not the ubiquitous casein kinase II present in a variety of cell types. Further purification of the cell fractions revealed that the protein kinase C (PKC) isomers constitute the staurosporin-sensitive kinases alpha, beta, gamma, and zeta, with the PKCgamma isomer being the most effective in phosphorylating the P protein. A unique heparin-sensitive kinase was characterized as a 71-kDa protein with biochemical properties not demonstrated by any known protein kinases stored in the protein data bank. This protein kinase, designated RVPK (rabies virus protein kinase), phosphorylates P protein (36 kDa) and alters its mobility in gel to migrate at 40 kDa. In contrast, the PKC isoforms do not change the mobility of unphosphorylated P protein. RVPK appears to be packaged in the purified virions, to display biochemical characteristics similar to those of the cell-purified RVPK, and to similarly alter the mobility of endogenous P protein upon phosphorylation. By site-directed mutagenesis, the sites of phosphorylation of RVPK were mapped at S(63) and S(64), whereas PKC isomers phosphorylated at S(162), S(210), and S(271). Involvement of a unique protein kinase in phosphorylating rabies virus P protein indicates its important role in the structure and function of the protein and consequently in the life cycle of the virus.  相似文献   

8.
Cheng G  Brett ME  He B 《Journal of virology》2002,76(18):9434-9445
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) is required for viral neurovirulence in vivo. In infected cells, this viral protein prevents the shutoff of protein synthesis mediated by double-stranded-RNA-dependent protein kinase PKR. This is accomplished by recruiting protein phosphatase 1 to dephosphorylate the alpha subunit of translation initiation factor eIF-2 (eIF-2 alpha). Moreover, the gamma(1)34.5 protein is implicated in viral egress and interacts with proliferating cell nuclear antigen. In this report, we show that the gamma(1)34.5 protein encoded by HSV-1(F) is distributed in the nucleus, nucleolus, and cytoplasm in transfected or superinfected cells. Deletion analysis revealed that the Arg-rich cluster from amino acids 1 to 16 in the gamma(1)34.5 protein functions as a nucleolar localization signal. The region from amino acids 208 to 236, containing a bipartite basic amino acid cluster, is able to mediate nuclear localization. R(215)A and R(216)A substitutions in the bipartite motif disrupt this activity. Intriguingly, leptomycin B, an inhibitor of nuclear export, blocks the cytoplasmic accumulation of the gamma(1)34.5 protein. L(134)A and L(136)A substitutions in the leucine-rich motif completely excluded the gamma(1)34.5 protein from the cytoplasm. These results suggest that the gamma(1)34.5 protein continuously shuttles between the nucleus, nucleolus, and cytoplasm, which may be a requirement for the different activities of the gamma(1)34.5 protein in virus-infected cells.  相似文献   

9.
Protein fluorescence of lactate dehydrogenase   总被引:18,自引:18,他引:0       下载免费PDF全文
1. There is a non-linear decrease in the protein fluorescence (F) of lactate dehydrogenase with the increase in the fraction (alpha) of the coenzyme-binding sites occupied with NADH. 2. By a curve-fitting procedure it is shown that the fluorescence intensity can be represented by the equation F=[1-alpha(1-x)](n) where n is the number of identical and indistinguishable coenzyme-binding sites per protein molecule and x=F(s) (1/n) (F(s) is the protein fluorescence at alpha=1). This equation implies that the relative protein fluorescence of molecules bearing j ligands form the geometric series x(j). 3. Non-linear quenching of protein fluorescence for this enzyme is probably due to radiationless transfer of energy from the protein molecule to the bound NADH and should also be observed when other potential acceptors of protein fluorescence are bound at unique sites. 4. The intercept with F(s) of an initial tangent to a curve of protein fluorescence against alpha will be at a value of alpha equal to (K(d)+[E(0)]). (1-x(n))/n.(1-x) and not at a value equal to the sum of the dissociation constant (K(d)) and the concentration of identical ligand-binding sites ([E(0)]). 5. A use of non-linear protein fluorescence quenching to investigate the state of aggregation of a protein is discussed.  相似文献   

10.
The properties and catalytic reactions of the enzyme nitrogenase purified from Klebsiella pneumoniae were studied by electron-paramagnetic-resonance (e.p.r.) spectroscopy at temperatures down to 8 degrees K. The two protein fractions, Kp1 (the iron-molybdenum protein) and Kp2 (the iron protein), were examined alone and in steady-state mixtures and also in pre-steady-state experiments, by using the rapid-freezing method. Kp1 protein in dithionite solution shows a rhombic type of spectrum with g(1) 4.32, g(2) 3.63, g(3) 2.009 at pH6.8 (0 degrees C). Small changes in the spectrum produced by protons (pK=8.7 at 0 degrees C) or by acetylene indicate binding of these oxidizing substrates to this protein fraction. Kp2 protein shows a rhombic spectrum with g(1) 2.053, g(2) 1.942, g(3) 1.865, which integrates to about 0.45 electron/molecule. Binding of ATP, with a dissociation constant of 4x10(-4)m, changes the spectrum to an axial form with g( parallel) 2.036, g( perpendicular) 1.929, thus indicating a conformation change of Kp2 protein. The Kp2 protein spectrum disappears reversibly on cautious oxidation. The signals of both proteins are diminished in their steady-state mixtures, obtained in the presence of ATP and dithionite (with an ATP-generating system and Mg(2+) ions) and with protons, N(2) or acetylene as oxidizing substrate. At the same time as dithionite is consumed in such reactions, the Kp1 protein signal is gradually restored and the Kp2 protein signal diminishes to zero. In rapid-freezing experiments the signals from the two proteins decreased at indistinguishable rates (t((1/2)) about 10ms), then they remained constant. Results are interpreted in terms of a scheme in which reducing equivalents pass from dithionite to Kp2 protein, then, in an ATP-dependent reaction to Kp1 protein, this being finally reoxidized by N(2) or another oxidizing substrate. In this scheme Kp1 protein cycles between its signal-giving state and a very highly reduced signal-free state.  相似文献   

11.
Colicinogenic factors ColE1 and ColE2 are bacterial plasmids that exist in Escherichia coli as supercoiled deoxyribonucleic acid (DNA) and as strand-specific, relaxation complexes of supercoiled DNA and protein. Newly replicated ColE1 DNA becomes complexed with protein after the replication event. This association of DNA and protein can take place under conditions in which DNA or protein synthesis is arrested. The addition of cyclic adenosine monophosphate (c-AMP) to normal cells growing in glucose medium results in a six- to tenfold stimulation in the rate of synthesis of the protein component(s) of the complex and a three- to fivefold stimulation in the rate of ColE1 DNA replication. Employing mutants deficient in catabolite gene activator protein or adenylate cyclase, it was shown that synthesis of both the plasmid-determined protein colicin E1 and the protein component(s) of the ColE1 relaxation complex is mediated through the c-AMP-catabolite gene activator protein system. Addition of c-AMP to ColE2-containing cells results in the stimulation of synthesis of ColE2 DNA and relaxation protein(s) as well as in the production of a protein component of the ColE2 relaxation complex that renders it sensitive to induced relaxation by heat treatment. In the case of ColE2, synthesis of the relaxation protein(s) is not dependent upon catabolite gene activator protein.  相似文献   

12.
Gelatinase B is a member of the matrix metalloproteinase family that efficiently cleaves gelatin, elastin, and types V and X collagen. To understand the contribution of the active site of the enzyme (amino acid residues 373-456) in these activities, we studied catalytic properties of a fusion protein consisting of maltose binding protein and the active site region of gelatinase B. We found that addition of the active site of gelatinase B, which corresponds to 12% of the total protein molecule, to maltose binding protein is sufficient to endow the protein with the ability to cleave the peptide substrates Mca-PLGL(Dpa)AR-NH(2) and DNP-PLGLWA-(D)-R-NH(2). The fusion protein hydrolyzed the Mca-PLGL(Dpa)AR-NH(2) peptide with the same efficiency as that of the stromelysin, k(cat)/K(m) approximately 1.07 x 10(6) M(-)(1) h(-)(1). The fusion protein, however, was not able to degrade the large substrate, gelatin. Inhibition of the activity of the protein by EDTA suggested that its activity was metal dependent. ESR analyses indicated that the fusion protein bound one molecule of Zn(2+). In addition, Z-Pro-Leu-Gly-hydroxamate and TIMP-1 inhibited the activity of the protein, suggesting that the structure of the active site of the fusion protein is similar to that of the other metalloproteinases. These data provide fundamental information about the structural elements required for transforming a protein to a metalloprotease.  相似文献   

13.
Inhibition of HeLa Cell Protein Synthesis by the Vaccinia Virion   总被引:42,自引:30,他引:12       下载免费PDF全文
  相似文献   

14.
Examination of 15-day-old rabbit brain myelin proteins by sodium dodecyl sulfate-slab gel electrophoresis revealed the presence of a basic protein with a molecular weight of 21,000 (21K protein) which was not previously reported in this species. This protein exhibited characteristic bluish green color with amido black and gave an amino acid composition strikingly similar to large basic protein (LBP). It formed a line of identity with LBP when diffused against antiserum to chicken brain basic protein. The concentration of LBP (18.9 micrograms/mg of dry myelin) is 6-fold greater than that of the 21K protein(3.31 micrograms/mg of dry myelin) in rabbit brain myelin. After the intracerebral injection of [32P]orthophosphoric acid, both LBP and 21K protein were found to be phosphorylated. [32P]Phosphate in the purified preparations of these proteins was covalently linked by phosphoester bonds to serine and threonine residues. The specific radioactivity of the 21K protein (84,693 cpm/mg of protein) was not significantly higher than LBP (69,797 cpm/mg of protein).  相似文献   

15.
The nitrogenase-regulating enzymes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG), from Rhodospirillum rubrum, were shown to be sensitive to the redox status of the [Fe(4)S(4)](1+/2+) cluster of nitrogenase Fe protein from R. rubrum or Azotobacter vinelandii. DRAG had <2% activity with oxidized R. rubrum Fe protein relative to activity with reduced Fe protein. The activity of DRAG with oxygen-denatured Fe protein or a low molecular weight substrate, N(alpha)-dansyl-N(omega)-(1,N(6)-etheno-ADP-ribosyl)-arginine methyl ester, was independent of redox potential. The redox midpoint potential of DRAG activation of Fe protein was -430 mV versus standard hydrogen electrode, coinciding with the midpoint potential of the [Fe(4)S(4)] cluster from R. rubrum Fe protein. DRAT was found to have a specificity opposite that of DRAG, exhibiting low (<20%) activity with 87% reduced R. rubrum Fe protein relative to activity with fully oxidized Fe protein. A mutant of R. rubrum in which the rate of oxidation of Fe protein was substantially decreased had a markedly slower rate of ADP-ribosylation in vivo in response to 10 mM NH(4)Cl or darkness stimulus. It is concluded that the redox state of Fe protein plays a significant role in regulation of the activities of DRAT and DRAG in vivo.  相似文献   

16.
Gravel KA  Morrison TG 《Journal of virology》2003,77(20):11040-11049
The activation of most paramyxovirus fusion proteins (F proteins) requires not only cleavage of F(0) to F(1) and F(2) but also coexpression of the homologous attachment protein, hemagglutinin-neuraminidase (HN) or hemagglutinin (H). The type specificity requirement for HN or H protein coexpression strongly suggests that an interaction between HN and F proteins is required for fusion, and studies of chimeric HN proteins have implicated the membrane-proximal ectodomain in this interaction. Using biotin-labeled peptides with sequences of the Newcastle disease virus (NDV) F protein heptad repeat 2 (HR2) domain, we detected a specific interaction with amino acids 124 to 152 from the NDV HN protein. Biotin-labeled HR2 peptides bound to glutathione S-transferase (GST) fusion proteins containing these HN protein sequences but not to GST or to GST containing HN protein sequences corresponding to amino acids 49 to 118. To verify the functional significance of the interaction, two point mutations in the HN protein gene, I133L and L140A, were made individually by site-specific mutagenesis to produce two mutant proteins. These mutations inhibited the fusion promotion activities of the proteins without significantly affecting their surface expression, attachment activities, or neuraminidase activities. Furthermore, these changes in the sequence of amino acids 124 to 152 in the GST-HN fusion protein that bound HR2 peptides affected the binding of the peptides. These results are consistent with the hypothesis that HN protein binds to the F protein HR2 domain, an interaction important for the fusion promotion activity of the HN protein.  相似文献   

17.
We expressed firstly the Capsid protein gene defecting the nuclear localization signal (NLS) of Porcine circovirus type II (PCV2) in Escherichia coli as a fusion protein with glutathione S-transferase (rGST-dCap protein). The purified rGST-dCap protein and the recombinant NLS-defected Cap protein of PCV2 (rdCap protein) from the purified rGST-dCap protein reacted specifically with swine antiserum to PCV2. Furthermore, the obtained monoclonal antibodies (mAbs) to rdCap protein were shown to bind to PCV2 particles replicated in PK15 cell and capsid protein (Cap protein) of PCV2 expressed in PK15 cells, respectively. mAbs to rdCap protein also revealed the neutralizing ability to PCV2 particles. These results demonstrated that rGST-dCap protein expressed in E. coli was folded correctly or at least partly, and mAbs to rdCap protein possessed the binding epitopes of PCV2 particles whereas mAbs 4C4 and 3F6 to rdCap protein remained the neutralization epitope of PCV2 particle, showing a possibility of neutralizing mAb to rdCap protein as an immnuotherapeutic agent and a potential of rGST-dCap protein as a vaccine antigen or serodiagnostic reagent.  相似文献   

18.
This paper describes a method for the effective and self-oriented immobilization of antibodies on magnetic silica-nanoparticles using a multimeric protein G. Cysteine-tagged recombinant dimers and trimers of protein G were produced in Escherichia coli BL21 by repeated linking of protein G monomers with a flexible (GGGGS)(3) linker. Amino-functionalized silica-coated magnetic nanoparticles (SiO(2)-MNPs, Fe(3)O(4)@SiO(2)) were prepared and coupled to the protein G multimers, giving the final magnetic immunosensor. The optimal conditions for the reaction between the protein Gs and the SiO(2)-MNPs was a time of 60 min and a concentration of 100 μg/mL, resulting in coupling efficiencies of 77%, 67% and 55% for the monomeric, dimeric and trimeric protein Gs, respectively. Subsequently, anti-hepatitis B surface antigen (HBsAg) was immobilized onto protein G-coupled SiO(2)-MNPs. The quantitative efficiency of antibody immobilization found the trimeric protein G to be the best, followed by the dimeric and monomeric proteins, which differs from the coupling efficiencies. Using all three protein constructs in an HBsAg fluoroimmunoassay, the lowest detectable concentrations were 500, 250 and 50 ng/mL for the monomeric, dimeric and trimeric protein G-coupled SiO(2)-MNPs, respectively. Therefore, multimeric protein Gs, particularly the trimeric form, can be employed to improve antibody immobilization and, ultimately, enhance the sensitivity of immunoassays. In addition, the multimeric protein Gs devised in this study can be utilized in other immunosensors to bind the antibodies at a high efficiency and in the proper orientation.  相似文献   

19.
The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution prior to the addition of RecA protein, a significant inhibition of ATPase activity is observed. Also, when SSB protein is added after the formation of a RecA protein-single-stranded DNA complex using either etheno M13 DNA, poly(dA) or poly(dT), or using single-stranded phage M13 DNA at lower temperature (25 °C) and magnesium chloride concentrations of 1 mm or 4 mm, a time-dependent inhibition of activity is observed. These results are consistent with the conclusion that SSB protein displaces the RecA protein from these DNA substrates, as described in the accompanying paper. However, if SSB protein is added last to complexes of RecA protein and single-stranded M13 DNA at elevated temperature (37 °C) and magnesium chloride concentrations of 4 mm or 10 mm, or to poly(dA) and poly(dT) that was renatured in the presence of RecA protein, no inhibition of ATPase activity is observed; in fact, a marked stimulation is observed for single-stranded M13 DNA. A similar effect is observed if the bacteriophage T4-coded gene 32 protein is substituted for SSB protein. The apparent stoichiometry of DNA (nucleotides) to RecA protein at the optimal ATPase activity for etheno M13 DNA, poly(dA) and poly(dT) is 6(±1) nucleotides per RecA protein monomer at 4 mm-MgCl2 and 37 °C. Under the same conditions, the apparent stoichiometry obtained using single-stranded M13 DNA is 12 nucleotides per RecA protein monomer; however, the stoichiometry changes to 4.5 nucleotides per RecA protein monomer when SSB protein is added last. In addition, a stoichiometry of four nucleotides per RecA protein can be obtained with single-stranded M13 DNA in the absence of SSB protein if the reactions are carried out in 1 mm-MgCl2. These data are consistent with the interpretation that secondary structure within the natural DNA substrate limits the accessibility of RecA protein to these regions. The role of SSB protein is to eliminate this secondary structure and allow RecA protein to bind to these previously inaccessible regions of the DNA. In addition, our results have disclosed an additional property of the RecA protein-single-stranded DNA complex: namely, in the presence of complementary base-pairing and at elevated temperatures and magnesium concentrations, a unique RecA protein-DNA complex forms that is resistant to inhibition by SSB protein.  相似文献   

20.
Photoaffinity labeling of T4 bacteriophage 32 protein   总被引:1,自引:0,他引:1  
With a view toward the determination of nucleic acid binding domains and sites on nucleic acid helix-destabilizing (single strand-specific) proteins (HDPs), we have studied the interactions of the copolymer polynucleotide photoaffinity label, poly(adenylic, 8-azidoadenylic acid), (poly(A,8-N3A] with the T4 bacteriophage HDP, 32 protein. Poly(A,8-N3A) quenched the intrinsic tryptophan fluorescence of 32 protein in a manner similar to that observed with other polynucleotides, and the effect could be reversed by addition of sufficient NaCl. The binding affinity and site size of this noncovalent interaction of poly(A,8-N3A) with 32 protein are similar to the values obtained for poly(A) and this protein. When [3H]poly(A,8-N3A)/32 protein mixtures were irradiated at 254 nm, fluorescence quenching was not reversed by NaCl, suggesting that the label was covalently bound to the protein. Mixtures of photolabel and protein subjected to short periods of irradiation (generally 1 min, 2000 erg mm-2) formed high molecular weight complexes, which when electrophoresed on sodium dodecyl sulfate (SDS)-polyacrylamide gels were radioactive and stained with Coomassie Blue R. Under the same conditions, [3H]poly(A) failed to label 32 protein. The radioactivity of [3H]poly(A,8-N3A)-labeled complexes subjected to micrococcal nuclease after irradiation was seen to migrate just behind the free 32 protein monomer on SDS-polyacrylamide gels, indicating that portions of the photolabel not in direct contact with protein were accessible to this enzyme. By several criteria, we conclude that 32 protein was photolabeled specifically at its single-stranded nucleic acid binding site. Single-stranded nucleic acids with affinities for protein greater than that of poly(A,8-N3A) effectively inhibited photolabeling. The [NaCl] dependence of photolabeling monitored on SDS gels paralleled the NaCl reversal of (noncovalent) poly(A,8-N3A)-32 protein binding. Photolabeling reached a plateau after 1-2 min. The formation of high molecular weight complexes with increasing [poly(A,8-N3A)] paralleled the disappearance of free protein on SDS gels, and reached a saturation level of about 75% labeling. Several chromatographic procedures appear to be useful for the separation of the photolabeled complexes from free protein and photolabel. Limited trypsin hydrolysis of photolabeled 32 protein indicated that all the label was within the central ("III") portion of the protein. This approach should have general applicability to the identification of nucleic acid binding sites on helix-destabilizing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号