首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique ligands of [Ru(bipy)2(bpda)](PF6)2 (1, BPDA=1,1′-biphenyl-2,2′-diamine) and [Ru(bipy)2(dabipy)](PF6)2 (2, DABIPY=3,3′-diamino-2,2′-bipyridine) are atropisomeric (exhibit hindered rotation about the sigma bonds that connect the two aromatic groups), so the complexes are diasteromeric with conformation isomers possible for the atropisomeric ligands and configurational isomers possible at the metal centers. Only one diastereomer is observed in the solid-state in both cases. The seven- (1) and five-membered (2) chelate ring of dabipy and bpda (the ligand is bound through its pyridyl groups) ligands are δ when the configuration at the metal is Δ. No evidence for atropisomerization is found in solution. For 1, we conclude bpda binds stereospecifically; however, the atropisomerization barrier of dabipy may be sufficiently low for 2 to preclude the observation of diastereomers by low-temperature NMR spectroscopy.  相似文献   

2.
Non-enzymatic reactions of the 3,4-oxide of 2,2′,5,5′-tetrachlorobiphenyl (TCB) with methionine or N-acetylmethionine in ethanol/neutral buffer at 37°C proceeded very slowly to yield an approx. 1 : 1 ratio of 3- and 4-methylthio-TCB. Under similar conditions reaction of TCB 3,4-oxide with cysteine proceeded about 100 times more rapidly to yield an approx. 1 : 1 ratio of 3- and 4-(cystein-S-yl)-TCB as the major products. Cystein-S-yl-3,4-dihydro-hydroxy-TCB(s) was also formed as a minor product from reaction of TCB 3,4-oxide with cysteine in dimethyl sulfoxide/neutral buffer. TCB 3,4-oxide did not react detectably with glutathione in ethanol/neutral buffer at 37°C or 70°C, but reaction in ethanol/pH 8.7 buffer at 37°C proceeded very rapidly to yield about a 1 : 1 ratio of 3- and 4-(glutathion-S-yl)-TCB and of two glutathion-S-yl-TCB precursors. Glutathion-S-yl-TCB(s) and its precursor(s) were also formed rapidly in a rat liver cytosol-catalyzed reaction of TCB 3,4-oxide with glutathione at neutral pH. The glutathion-S-yl-TCBs readily degraded upon concentration in aqueous alcohol solutions under mild conditions to yield compounds tentatively identified as [N-(5-carboxy-1-pyrrolin-2-yl)-1-glycinocystein-S-yl]-TCBs, (1-glycinocystein-S-yl)-TCBs and 2-oxopyrrolidine-5-carboxylic acid.

Rats given a single dose of TCB excreted about 0.07% of the dose in the feces during the first 4 days as 3-methylthio-TCB, 4-methylthio-TCB, 4-methylsulfonyl-TCB, methylthio-hydroxy-TCBs (tentatively identified) and mercapto-TCB(s) (tentatively identified) in about a 1 : 5 : 0.1 : 0.1 : 0.05 ratio, respectively. Rats given an equimolar dose of TCB 3,4-oxide excreted similar ratios of these fecal metabolites in approx. 10-fold greater quantities. Mice given TCB excreted about 0.1% of the dose in the feces during the first 4 days as 3-methylthio-TCB, 4-methylthio-TCB and 3-methylsulfonyl-TCB in about a 1.5 : 1 : 0.05 ratio, respectively. Methylthio-TCBs were not detected (<0.0004% of the dose) in the bile of a cannulated rat given a single dose of TCB. About 1.5% of the TCB dose was excreted in the bile as glutathion-S-yl-TCB(s) and its precursor(s). Collectively, the data indicate that TCB 3,4-oxide is a primary metabolic intermediate in the formation of methylthio-metabolites of TCB.  相似文献   


3.
Fluorescence characteristics and energy transfer to a cerium complex with 2,2′-bipyridine (bpy) in methanol are described. Stoichiometries and the stability constant of the Ce(III)–bpy complex in methanol were determined by use of the molar ratio method. A fluorescence lifetime and a quantum yield have been measured for the 2:1 complex. Decay times and time-resolved (T---S) emission spectra for Ce(III)–bpy and CeCl3 were measured in methanol at room temperature. An energy transfer rate constant was determined from the luminescence lifetime and the quantum yield. The mechanism of energy transfer from the lowest excited singlet S1 to the 5d level of the Ce(III) in the Ce(III)–bpy complex system is discussed in some detail.  相似文献   

4.
5.
Electrochemiluminescence (ECL) of tris(2,2’‐bipyridyl)ruthenium(II) [Ru(bpy)32+] is an active research area and includes the synthesis of ECL‐active materials, mechanistic studies and broad applications. Extensive research has been focused on this area, due to its scientific and practical importance. In this mini‐review we focus on the bio‐related applications of ECL. After a brief introduction to Ru(bpy)32+ ECL and its mechanisms, its application in constructing an effective bioassay is discussed in detail. Three types of ECL assay are covered: DNA, immunoassay and functional nucleic acid sensors. Finally, future directions for these assays are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   

7.
The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state.Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P , with a = 9.022(2), b = 9.040(2), c = 8.409(2) Å, α = 103.51(2), β = 103.42(3), γ = 103.37(2)°, V = 642.9(3) Å3, Z = 1, Dx = 1.699 g cm−3, μ(Mo Kα) = 17.208 cm−1, F(000) = 336 and T= 295 K. A total of 2251 data were collected over the range 1θ25°; of these, 1993 (independent and with I3σ(I)) were used in the structural analysis. The final R and Rw residuals were 0.034 and 0.038 respectively. The structure contains squarato-O1, O3-bridged bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] units forming zigzag one-dimensional chains. Each copper atom is in a square-pyramidal environment with the two nitrogen atoms of 2,2′-bipyridyl and the two oxygen atoms of the hydroxo groups building the basal plane and another oxygen atom of the squarate lying in the apical position.The magnetic properties are discussed in the light of spectral and structural data and compared with the reported ones for other bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] complexes.  相似文献   

8.
The effects of the nonpenetrating amino reactive reagent 4-acetamido-4′-isothiocyano-stilbene-2-2′-dilsulfonic acid (SITS) on anion transport (sulfate, chloride, and inorganic phosphate) were investigated in Ehrlich ascites tumor cells. Short time exposure to SITS produces a reversible inhibition (92%) of sulfate transport. The kinetics of interaction suggest that reversibly bound SITS competitively inhibits sulfate transport, Ki = 3 × 10?6 M. Incubation of tumor cells with SITS (1 × 10?4 M) for longer periods of time results in a time dependent irreversible inhibition of sulfate transport which obeys first order kinetics. The rate coefficient for the inactivation process is 0.040 min?1. The kinetics of irreversible inhibition is best explained by the irreversible binding of SITS to the sulfate transport site, and therefore makes SITS a potentially useful probe for the quantitation of these sites in the tumor cell. The lack of effect of irreversibly bound SITS on either chloride or inorganic phosphate transport points to a specificity in the interaction of SITS with the tumor cell membrane, as well as indicating that an alternate pathway exists for the movement of these anions across the membrane.  相似文献   

9.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A simple, sensitive and rapid HPLC method with fluorescence detection for the determination of dimethyl‐4,4′‐dimethoxy‐5,6,5′,6′‐dimethylene dioxybiphenyl‐2,2′‐dicarboxylate (DDB) in the raw material and pill form was developed. Liquid chromatography was performed on a C18 column (250 × 4.6 mm i.d., 5 µm particle size), the mobile phase consisted of methanol and 0.05 M sodium dihydrogen phosphate buffer (80 : 20, v/v), and the apparent pH of the mobile phase was adjusted to 3. The fluorescence detector was operated at excitation/emission wavelengths of 275/400 nm. The proposed method allows the determination of DDB within concentration range 0.1–1.5 µg/mL with a limit of detection of 0.032 µg/mL, a limit of quantification of 0.097 µg/mL and a correlation coefficient of 0.9997. The proposed method has been successfully applied for the analysis of DDB in its pills with a percentage recovery of 98.45 ± 0.32. The method was fully validated according to ICH guidelines. Moreover, the high sensitivity of the method permits its use in an in vitro dissolution test for DDB under simulated intestinal conditions. In addition, the proposed method was extended to a content uniformity test according to USP guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Of all the commercially available amino acid derivatives for solid phase peptide synthesis, none has a greater abundance of side‐chain protection diversity than cysteine. The high reactivity of the cysteine thiol necessitates its attenuation during peptide construction. Moreover, the propensity of cysteine residues within a peptide or protein sequence to form disulfide connectivity allows the opportunity for the peptide chemist to install these disulfides iteratively as a post‐synthetic manipulation through the judicious placement of orthogonal pairs of cysteine S‐protection within the peptide's architecture. It is important to continuously discover new vectors of deprotection for these different blocking protocols in order to achieve the highest degree of orthogonality between the removal of one species in the presence of another. We report here a complete investigation of the scope and limitations of the deprotective potential of 2,2′‐dithiobis(5‐nitropyridine) (DTNP) on a selection of commercially available Cys S‐protecting groups. The gentle conditions of DTNP in a TFA solvent system show a remarkable ability to deprotect some cysteine blocking functionality traditionally removable only by more harsh or forcing conditions. Beyond illustrating the deprotective ability of this reagent cocktail within a cysteine‐containing peptide sequence, the utility of this method was further demonstrated through iterative disulfide formation in oxytocin and apamin test peptides. It is shown that this methodology has high potential as a stand‐alone cysteine deprotection technique or in further manipulation of disulfide architecture within a more complex cysteine‐containing peptide template. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
UV absorption data analysis has been used to evaluate equilibrium constants of the pH‐induced interaction of 2,2′‐Bipy with polyadenylnic‐polyuridylic acid in aqueous solution. The conditional probabilities hard model has been adopted in treatment of concentration diagrams calculated by the soft modelling‐based Multivariate Curve Resolution‐Alternating Least Squares approach. Intrinsic binding constant (lgKg = 1.93), and the cooperativity parameter (ω = 340), were calculated as the best fit. The plot of the experimental binding constant versus 2,2′‐Bipy equilibrium concentration shows two modes of ligand with polymer interactions. The equilibrium hard model correctly reproduced the binding constant variations observed in the experiment. The results indicated that ligand binding in two steps is governed by a cooperative process, that is, the enhancement of deprotonated structure stability. It would appear that proposed calculation approach can be used in future combined hard modelling theoretical and soft modelling experimental works. © 2013 Wiley Periodicals, Inc. Biopolymers 99:621–627, 2013.  相似文献   

13.
A number of gallium(III) organophosphonates form adducts with the bidentate amines 2,2′-bipyridyl and 1,10-phenanthroline. These adducts contain a 1:2:1 molar ratio of metal/phosphorus/amine and have the proposed formulations Ga(O3PR)(O2P(OH)R)(C10H8N2)·H2O and Ga(O3PR)(O2P(OH)R)(C12H8N2)·H2O (where R=CH3, C6H5 and CH2C6H5; C10H8N2 is 2,2′-bipyridyl and C12H8N2 is 1,10-phenanthroline). Unlike the parent gallium(III) organophosphonates, which conform to the general formula Ga(OH)(O3PR)·xH2O (x=0 or 1), the amine adducts lack the hydroxo group, but contain the organophosphonate ligand in the partially as well as fully deprotonated forms. All compounds were isolated from aqueous solutions as monohydrates, with the exception of the bipyridyl adduct of gallium(III) phenylphosphonate, which is anhydrous. TGA measurements suggest that for the hydrates, the water molecule is not coordinated to the metal. The bipyridyl adducts of gallium(III) phenylphosphonate and gallium(III) methylphosphonate, like the parent gallium(III) organophosphonates, are very likely layered, as indicated by the powder XRD patterns. In contrast, the corresponding phenanthroline adducts are non-layered, and both the bipyridyl and phenanthroline adducts of gallium(III) benzylphosphonate are amorphous solids. FTIR, powder XRD, TGA, XPS, solid state 31P/13C MAS-NMR and BET surface area data are presented and discussed.  相似文献   

14.
A method for the quantification of 2′-deoxy-3′-thiacytidine (lamivudine, 3-TC), which incorporated the use of 3-isobutyl-methylxanthine as internal standard (I.S.) was developed and validated in human plasma, using HPLC with UV absorbance detection. Using solid-phase extraction, 3-TC and I.S. were selectively extracted from human plasma. Subsequently, chromatographic separation was performed using a YMC phenyl column with ion-pair chromatography and detection at 270 nm. The method was validated over a concentration range of 10 to 5000 ng/ml using 0.5 ml of human plasma. The extraction recovery for both 3-TC and I.S. was greater than 95%. The determination of inter- and intra-day precision (RSD) was less than 10% at all concentration levels, while the inter- and intra-day accuracy (% difference) was less than 6%.  相似文献   

15.
In contrast to the large number of sidechain protecting groups available for cysteine derivatives in solid phase peptide synthesis, there is a striking paucity of analogous selenocysteine Se‐protecting groups in the literature. However, the growing interest in selenocysteine‐containing peptides and proteins requires a corresponding increase in availability of synthetic routes into these target molecules. It therefore becomes important to design new sidechain protection strategies for selenocysteine as well as multiple and novel deprotection chemistry for their removal. In this paper, we outline the synthesis of two new Fmoc selenocysteine derivatives [Fmoc‐Sec(Meb) and Fmoc‐Sec(Bzl)] to accompany the commercially available Fmoc‐Sec(Mob) derivative and incorporate them into two model peptides. Sec‐deprotection assays were carried out on these peptides using 2,2′‐dithiobis(5‐nitropyridine) (DTNP) conditions previously described by our group. The deprotective methodology was further evaluated as to its suitability towards mediating concurrent diselenide formation in oxytocin‐templated target peptides. Sec(Mob) and Sec(Meb) were found to be extremely labile to the DTNP conditions whether in the presence or absence of thioanisole, whereas Sec(Bzl) was robust to DTNP in the absence of thioanisole but quite labile in its presence. In multiple Sec‐containing model peptides, it was shown that bis‐Sec(Mob)‐containing systems spontaneously cyclize to the diselenide using 1 eq DTNP, whereas bis‐Sec(Meb) and Sec(Bzl) models required additional manipulation to induce cyclization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
A novel ternary complex, Tb2L4·L′·(ClO4)6·8H2O, has been synthesized using bis(benzylsulfinyl)methane as the first ligand L and 2,2′‐dipyridyl as the second ligand L′. The ternary complex was characterized by element analysis, molar conductivity, coordination titration analysis, infrared, thermogravimetric‐differential scanning calorimetric and ultraviolet spectra. The results indicated that the composition of the complex was Tb2L4·L′·(ClO4)6·8H2O (L = C6H5CH2SOCH2SOCH2C6H5; L′ = Dipy). Fourier transform infrared results revealed that the perchlorate group was bonded with the Tb(III) ion by the oxygen atom, and the coordination was bidentate. The fluorescent spectra illustrated that the complex displayed characteristic fluorescence in the solid state. After the introduction of the second ligand, 2,2‐dipyridyl, the relative emission intensity and fluorescence lifetime of the ternary complex Tb2L4·L′·(ClO4)6·8H2O were enhanced compared to the binary complex TbL2.5(ClO4)3·3H2O. This indicated that the presence of both organic ligand bis(benzylsulfinyl)methane and the second ligand 2,2‐dipyridyl could sensitize the fluorescence intensity of Tb(III) ion, and introduction of the 2,2‐dipyridyl group resulted in an enhancement of the fluorescence of the Tb(III) ternary rare earth complex. The strongest characteristic fluorescence emission intensity of the ternary complex was 9.36 times that of the binary complex. The phosphorescence spectra and fluorescence lifetime of the complex were also measured. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A method for the simultaneous determination of de(N-methyl)-N-ethyl-8,9-anhydroerythromycin A 6,9-hemiacetal (EM523, I) and its three metabolites in human plasma and urine has been developed using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection. Plasma and urine samples spiked with erythromycin as an internal standard were extracted with a mixture of dichloromethane and diethyl ether under alkaline conditions. The ortanic layer was evaporated under a stream of nitrogen gas. The reconstituted sample was injected into an HPLC apparatus and separated on an ODS column using a gradient elution method. The elute was reacted on-line with a mixture of tris(2,2′-bipyridine) ruthenium(II) and peroxodisulfate, and the generated CL intensity was detected. Optimization of the CL reaction conditions resulted in a sensitive and stable CL intensity for the determination of I and its metabolites. The recovery of each compound from human plasma and urine, and the sensitivity, linearity, accuracy and precision of the method were satisfactory. The lower limits of quantitation for each compound using 0.2 ml of plasma and 0.1 ml of urine were 1 and 00 ng/ml, respectively. This method has been used for the determination of I in samples from clinical trials.  相似文献   

19.
Proton NMR studies of N,N-diethylformamide (def) exchange on [M(Me6tren)def]2+ where M = Co and Cu yield: kex (298.2K) = 26.3 ± 2.2, 980 ± 70 s−1; ΔH = 58.3 ± 1.7, 36.3 ± 0.9 kJ mol−1; ΔS= −22.2 ± 4.6, −65.9 ± 2.5 J K−1 mol−1; and ΔV = −1.3 ± 0.2, 5.3 ± 0.3 cm3 mol−1 respectively. These data which are consistent with a and d activation modes operating when M = Co and Cu respectively are compared with data for related systems.  相似文献   

20.
A reversed-phase high-performance liquid chromatographic method was developed for the determination of 3′-hydroxy-5′-(4-isobutyl-1-piperazinyl)benzoxazinorifamycin (KRM-1648, I), a new rifamycin derivative, and its 25-deacetyl metabolite (KRM-1671, II) in plasma, whole blood, tissues and urine from rats. I and II were coextracted with an internal standard from each sample matrix by solid-phase extraction (Bond Elut). Plasma and urine were directly loaded onto Bond Elut, while whole blood and tissues were homogenized and extracted with methanol or dichloromethane—chloroform prior to Bond Elut extraction. The extracts were chromatographed on Shim-pack CLC-ODS(M) using acetonitrile—0.02 M citrate buffer containing 0.1 M sodium perchlorate (2:1, v/v), and peaks were detected at 643 nm. The validation data showed that the assays for I and II in plasma, whole blood, tissues and urine were selective, accurate and reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号