首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaredoxin (Grx), which has been found widely in bacteria, plant, and mammalian cells, is an electron carrier for ribonucleotide reductase and a general glutathione-disulfide reductase of importance for redox regulation. The open reading frame designated ssr2061 from cyanobacterium Synechocystis sp. PCC 6803 was found as a homologous gene coding for Grx. The amino acid sequence deduced from ssr2061 shares high identity with that of Grxs from other organisms. In the present study, the protein of Grx2061 encoded by ssr2061 was successfully overexpressed as soluble fraction in Escherichia coli BL21 (DE3). The recombinant protein was purified to near homogenity by two steps involving immobilized metal affinity chromatography and gel filtration chromatography with a yield of 22% and a specific activity of 41.5 micromol NADPH oxidized per milligram of protein in the 2-hydroxyethyl disulfide assay. The pET-2061 transformed Escherichia coli cells showed higher Grx activity and tolerance to H(2)O(2) mediated growth inhibition compared to cells transformed with the vector alone. This suggests that overexpression of Grx from Synechocystis sp. PCC 6803 may provide protection to E. coli cells against oxidative stress mediated by H(2)O(2).  相似文献   

2.
Glutaredoxins (Grxs) are small ubiquitous glutathione-disulfide oxidoreductase that reduce disulfide bonds of target proteins and maintain the redox homoeostasis of cells. Disruption of ssr2061 reduced the viability of cells indicated Grx2061 has a protective role against oxidative stress in Synechocystis sp. PCC 6803. To understand the function of Grx2061 in cyanobacteria and its difference from plant, Grx targets were retained specifically on an affinity media coupled with a mutated monocysteinic Grx and identified by mass spectra. Among 42 identified targets, 26 of them are novel ones compared with those known in higher plants. These proteins are supposed to be involved in 12 cellular processes including oxidative stress response, Calvin cycle, protein synthesis, and etc. Biochemical tests highlighted four of them which showed a Grx-dependent activation of peroxiredoxin and deactivation of catalase. Oxidized Grx2061 could keep redox equilibrium with another probable Grx and be reduced by thioredoxin reductase, indicating that Grx2061 can accept electrons from either glutathione or thioredoxin reductase. Our studies suggest Grx2061 in cyanobacteria plays an important role in redox network and its targets are as extensive as that in other organisms.  相似文献   

3.
4.
The gene products of sll0337 and slr0081 in Synechocystis sp. PCC 6803 have been identified as the homologues of the Escherichia coli phosphate-sensing histidine kinase PhoR and response regulator PhoB, respectively. Interruption of sll0337, the gene encoding the histidine protein kinase, by a spectinomycin-resistance cassette blocked the induction of alkaline phosphatase activity under phosphate-limiting conditions. A similar result was obtained when slr0081, the gene encoding the response regulator, was interrupted with a cassette conferring resistance to kanamycin. In addition, the phosphate-specific transport system was not up-regulated in our mutants when phosphate was limiting. Unlike other genes for bacterial phosphate-sensing two-component systems, sll0337 and slr0081 are not present in the same operon. Although there are three assignments for putative alkaline phosphatase genes in the Synechocystis sp. PCC 6803 genome, only sll0654 expression was detected by northern analysis under phosphate limitation. This gene codes for a 149 kDa protein that is homologous to the cyanobacterial alkaline phosphatase reported in Synechococcus sp. PCC 7942 [Ray, J.M., Bhaya, D., Block, M.A. and Grossman, A.R. (1991) J. Bact. 173: 4297–4309]. An alignment identified a conserved 177 amino acid domain that was found at the N-terminus of the protein encoded by sll0654 but at the C-terminus of the protein in Synechococcus sp. PCC 7942.  相似文献   

5.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production of F. psychrophilum recombinant proteins.  相似文献   

6.
Glutaredoxin (Grx) is a glutathione-dependent hydrogen donor for ribonucleotide reductase. Today glutaredoxins are known as a multifunctional family of GSH-disulfide-oxidoreductases belonging to the thioredoxin fold superfamily. In contrast to Escherichia coli and yeast, a single human glutaredoxin is known. We have identified and cloned a novel 18-kDa human dithiol glutaredoxin, named glutaredoxin-2 (Grx2), which is 34% identical to the previously known cytosolic 12-kDa human Grx1. The human Grx2 sequence contains three characteristic regions of the glutaredoxin family: the dithiol/disulfide active site, CSYC, the GSH binding site, and a hydrophobic surface area. The human Grx2 gene, located at chromosome 1q31.2--31.3, consisted of five exons that were transcribed to a 0.9-kilobase human Grx2 mRNA ubiquitously expressed in several tissues. Two alternatively spliced Grx2 mRNA isoforms that differed in their 5' region were identified. These corresponded to alternative proteins with a common 125-residue C-terminal Grx domain but with different N-terminal extensions of 39 and 40 residues, respectively. The 125-residue Grx domain and the two full-length variants were expressed in E. coli and exhibited GSH-dependent hydroxyethyl disulfide and dehydroascorbate reducing activities. Western blot analysis of subcellular fractions from Jurkat cells with a specific anti-Grx2 antibody showed that human Grx2 was predominantly located in the nucleus but also present in the mitochondria. We further showed that one of the mRNA isoforms corresponding to Grx2a encoded a functional N-terminal mitochondrial translocation signal.  相似文献   

7.
Two cDNA fragments (lrF1 and lrF2) representing a fibrinolytic enzyme gene of F-III-2 (GenBank AB045719), without and with signal peptide coding sequence, were cloned from earthworm Lumbricus rubellus. The two fragments were inserted into bacterial expression vector pET28a (+), respectively. Subsequent expression showed that both lrF1 and lrF2 proteins were produced as an inclusion body form in E. coli BL21 (DE3) pLysE. After protein refolding and purification, the fusion lrF1 and its derivative without poly histidine tags at the N-terminus showed fibrinolytic activity on fibrin plates with relative activity of 134.3 U/mg protein and 139.7 U/mg protein, respectively, whereas the fusion lrF2 and its derivative without the tags at the N-terminus, had no fibrinolytic activity. The results indicated that the E. coli expression system could not recognize the endogenous signal peptide of F-III-2, and the effect of the histidine tags at the N-terminus on the fibrinolytic activity of the expressed protein was insignificant.  相似文献   

8.
Two forms of the glutaredoxin (Grx) domain (full length Grx domain and short Grx lacking the N-terminal region) of Mus musculus thioredoxin glutathione reductase (TGR) were isotopically labelled with 15N and 13C isotopes, expressed and purified to homogeneity. We report here the 1H, 13C and 15N NMR assignment for both Grx forms of this mouse TGR. This investigation represents the first NMR analysis of a mammalian TGR.  相似文献   

9.
Members of the cyclophilin (Cyp) family are known to function as co-chaperones, interacting with chaperones such as heat shock protein 90, and perform important roles in protein folding under high temperature stress. In addition, they have been isolated from a wide range of organisms. However, there have been no reports on the functions of algal Cyps under other stress conditions. To study the functions of the cDNAGjCyp-1 isolated from the red alga (Griffithsia japonica), a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus was constructed and expressed inEscherichia coli. Most of the gene product expressed inE. coli was organized as aggregate insoluble particles known as inclusion bodies. Thus, the optimal time, temperature, and concentration ofl(+)-arabinose for expressing the soluble and nonaggregated form of GjCyp-1 inE. coli were examined. The results indicate that the induction of Cyp, at 0.2%l(+)-arabinose for 2 h at 25°C, had a marked effect on the yield of the soluble and active form of the co-chaperone as PPlase. An expressed fusion protein, H6GjCyp-1, maintained the stability ofE. coli proteins up to-75°C. In a functional bioassay of the recombinant H6GjCyp-1, the viability ofE. coli cells overexpressing H6GjCyp-1 was compared to that of cells not expressing H6GjCyp-1 at −75°C. For all the cycles of a freeze/thaw treatment, a significant increase in viability was observed in theE. coli cells overexpressing H6GjCyp-1. The results of the GjCyp-1 bioassays, as well asin vitro studies, strongly suggest that the algal Cyp confers freeze tolerance toE. coli.  相似文献   

10.
Methionine aminopeptidase, known to be encoded by single genes in prokaryotes, is a cobalt-dependent enzyme that catalyzes the removal of N-terminal methionine residues from nascent polypeptides. Three ORFs encoding putative methionine aminopeptidases from the genome of cyanobacterium Synechocystis sp. strain PCC6803, designated as slr0786 (map-1), slr0918 (map-2) and sll0555 (map-3) were cloned and expressed in Escherichia coli. The purified recombinant proteins encoded by map-1 and map-3 had much higher methionine aminopeptidase activity than the recombinant protein encoded by map-2. Comparative analysis revealed that the three recombinant enzymes differed in their substrate specificity, divalent ion requirement, pH, and temperature optima. The broad activities of the iso-enzymes are discussed in light of the structural similarities with other peptidase families and their levels of specificity in the cell. Potential application of cyanobacterial MetAPs in the production of recombinant proteins used in medicine is proposed. This is the first report of a prokaryote harboring multiple methionine aminopeptidases.Abbreviations map Gene encoding methionine aminopeptidase - MetAP Methionine aminopeptidase - eMetAP-Ia Escherichia coli methionine aminopeptidase type Ia - yMetAP-Ib Yeast methionine aminopeptidase type Ib - yMetAP-IIa Yeast methionine aminopeptidase type IIa - hMetAP-IIb Human methionine aminopeptidase type IIb - pfMetAP–IIa Pyrococcus furiosis methionine aminopeptidase type Ia - bst MetAP-Ia Bacillus stearothermophilus methionine aminopeptidase type Ia - c1MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-1 - c2MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-2 - c3MetAP-Ib Cyanobacterial methionine aminopeptidase type Ib, ncoded by map-3  相似文献   

11.
We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H2O2 as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide.  相似文献   

12.
To establish the overexpression and one-step purification system of Bacillus subtilis elongation factor-Tu (EF-Tu), the EF-Tu gene was amplified with or without own ribosome binding site (rbs) by PCR and the only PCR product without rbs was subcloned successfully. For the expression of the EF-Tu gene cloned after PCR amplification, a constitutive expression system and inducible expression system with His6 tag at N-terminus or C-terminus, or glutathione-S-transferase (GST) fusion system were examined in E. coli and B. subtilis. Except GST fusion system in E. coli, however, all other trials were unsuccessful at the step of plasmid construction for the EF-Tu expression. The GST/EF-Tu fusion proteins were highly expressed by IPTG induction and obtained as both soluble and insoluble form. From the soluble GST/EF-Tu fusion protein, EF-Tu was obtained to near homogeneity by one-step purification with glutathione-sepharose affinity column chromatography followed by factor Xa treatment. The purified EF-Tu showed high GDP binding activity. These results indicate that the GST/EF-Tu fusion system is favorable to overexpression and purification of B. subtilis EF-Tu.  相似文献   

13.
Glutaredoxins (Grxs) are a ubiquitous family of proteins that reduce disulfide bonds in substrate proteins using electrons from reduced glutathione (GSH). The yeast Saccharomyces cerevisiae Grx6 is a monothiol Grx that is localized in the endoplasmic reticulum and Golgi compartments. Grx6 consists of three segments, a putative signal peptide (M1-I36), an N-terminal domain (K37-T110), and a C-terminal Grx domain (K111-N231, designated Grx6C). Compared to the classic dithiol glutaredoxin Grx1, Grx6 has a lower glutathione disulfide reductase activity but a higher glutathione S-transferase activity. In addition, similar to human Grx2, Grx6 binds GSH via an iron-sulfur cluster in vitro. The N-terminal domain is essential for noncovalent dimerization, but not required for either of the above activities. The crystal structure of Grx6C at 1.5 Å resolution revealed a novel two-strand antiparallel β-sheet opposite the GSH binding groove. This extra β-sheet might also exist in yeast Grx7 and in a group of putative Grxs in lower organisms, suggesting that Grx6 might represent the first member of a novel Grx subfamily.  相似文献   

14.
As part of the project to develop an efficient biocatalytic process for the production of fumaric acid, a full-length putative maleate cis–trans isomerase gene from Rhodococcus jostii RHA1 was synthesized and expressed in Escherichia coli Rosetta2 (DE3) pLysS, but the protein was not soluble and showed no catalytic activity. Bioinformatics analysis of the protein sequence indicated that there were two hydrophilic and two hydrophobic amino acid clusters in an alternate arrangement at the N-terminus, and 50 extra amino acid residues at the N-terminus were not present in the known maleate cis–trans isomerases. The alternate hydrophilic and hydrophobic clusters at the N-terminus were thus truncated one by one to evaluate their effect on the gene expression and enzyme activity. Three mutants (MaiR-D41/42-304AA, MaiR-D48/49-304AA and MaiR-D52/53-304AA) without the hydrophilic and hydrophobic clusters were expressed as soluble protein with maleate cis–trans isomerase activity. Among them, MaiR-D48 was purified and its properties were studied. The purified enzyme had a temperature optimum of 40 °C and a wide pH range (5.0–9.0) with the optimum pH being 8.0. The whole cells of E. coli expressing MaiR-D48 catalyzed the isomerization of maleic acid to fumaric acid at 1 M substrate concentration, showing its potential for industrial use.  相似文献   

15.
Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, is a specific inhibitor of endothelial cell proliferation and angiogenesis. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in Escherichia coli by expressing via fusion with solubility-promoting peptides and optimizing the expression conditions. The rhEndostatin was expressed via fusion with glutathione S-transferase (GST) and NusA protein, respectively. It revealed that NusA protein enhanced the production of soluble rhEndostatin; but GST didn’t. By optimizing the expression conditions, the production of soluble NusA-rhEndostatin fusion protein was about 50% of total cellular proteins and about 90% of the products appeared in the cellular supernatant fraction. The soluble NusA-rhEndostatin fusion protein was purified by one-step hydrophobic interaction chromatography and NusA was removed by thrombin. Then rhEndostatin was purified by affinity chromatography and gel filtration chromatography. As a result, a simple and economical purification procedure for rhEndostatin isolation was obtained. The biological activity of the rhEndostatin was demonstrated in vitro using a human vascular endothelial cells (HuVECs) proliferation assay. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.  相似文献   

16.
Alves R  Herrero E  Sorribas A 《Proteins》2004,57(3):481-492
Grx5 is a Saccharomyces cerevisiae glutaredoxin involved in iron-sulfur cluster (FeSC) biogenesis. Previous work suggests that Grx5 is involved in regulating protein cysteine glutathionylation, prompting several questions about the systemic role of Grx5. First, is the regulation of mixed protein-glutathione disulfide bridges in FeSC biosynthetic proteins by Grx5 sufficient to account for the observed phenotypes of the Δgrx5 mutants? If so, does Grx5 regulate the oxidation state of mixed protein-glutathione disulfide bridges in FeSC biogenesis in general? Alternatively, can the Δgrx5 mutant phenotypes be explained if Grx5 acts on just one or a few of the FeSC biogenesis proteins? In the first part of this article, we address these questions by building and analyzing a mathematical model of FeSC biosynthesis. We show that, independent of the tested parameter values, the dynamic behavior observed in cells depleted of Grx5 can only be qualitatively reproduced if Grx5 acts by regulating the initial assembly of FeSC in scaffold proteins. This can be achieved by acting on the cysteine desulfurase (Nfs1) activity and/or on scaffold functionality. In the second part of this article, we use structural bioinformatics methods to evaluate the possibility of interaction between Grx5 and proteins involved in FeSC biogenesis. Based on such methods, our results indicate that the proteins with which Grx5 is more likely to interact are consistent with the kinetic modeling results. Thus, our theoretical studies, combined with known Grx5 biochemistry, suggest that Grx5 acts on FeSC biosynthesis by regulating the redox state of important cysteine residues in Nfs1 and/or in the scaffold proteins where FeSC initially assemble. Proteins 2004. © 2004 Wiley-Liss, Inc.  相似文献   

17.
A method is presented to produce large amounts of Bcl-2 and Bcl-xL, two anti-apoptotic proteins of considerable biomedical interest. Expression constructs were prepared in which the Escherichia coli protein TolAIII, known to promote over expression of soluble product, was added to the N-terminus of Bcl-2 or Bcl-xL proteins, which had their C-terminal hydrophobic anchors deleted. Here the expression of these TolAIII-fusion constructs, followed by a two-step metal-affinity based purification protocol is described. The method delivers at least 20 and 10 mg of more than 90% pure TolAIII-Bcl-xLΔC and TolAIII-Bcl-2(2)ΔC proteins, respectively, per liter of E. coli cell culture. The proteins are released by proteolysis with thrombin providing >12 mg of Bcl-xLΔC or >6 mg of Bcl-2(2)ΔC per liter of E. coli cell culture with a purity of more than 95%. Whereas Bcl-xLΔC is soluble both before and after TolAIII removal, Triton X-100 can significantly increase the extraction of TolAIII- Bcl-2(2)ΔC from the bacterial cells and its subsequent solubility. Far-UV CD spectroscopy demonstrated that they both have an α-helical structure. Fluorescence spectroscopy was used to quantitatively analyze the binding of the respiratory inhibitor antimycin A to recombinant Bcl-2 and Bcl-xL proteins as well as the displacement of this ligand from the hydrophobic pocket with BH3 Bad-derived peptide. Purified Bcl-xLΔC and Bcl-2(2)ΔC both protect isolated mitochondria from Bax-induced release of cytochrome c. The ensemble of data shows that the expressed proteins are correctly folded and functional. Therefore, the TolAIII-fusion system provides a convenient tool for functional characterization and structural studies of anti-apoptotic proteins.  相似文献   

18.
In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX2C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes.  相似文献   

19.
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.  相似文献   

20.
A fusion protein expression system is described that allows for production of eukaryotic integral membrane proteins in Escherichia coli (E. coli). The eukaryotic membrane protein targets are fused to the C terminus of the highly expressed E. coli inner membrane protein, GlpF (the glycerol-conducting channel protein). The generic utility of this system for heterologous membrane-protein expression is demonstrated by the expression and insertion into the E. coli cell membrane of the human membrane proteins: occludin, claudin 4, duodenal ferric reductase and a J-type inwardly rectifying potassium channel. The proteins are produced with C-terminal hexahistidine tags (to permit purification of the expressed fusion proteins using immobilized metal affinity chromatography) and a peptidase cleavage site (to allow recovery of the unfused eukaryotic protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号