首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triticum monococcum accession TA2026 showed resistance to wheat powdery mildew. To identify the resistance gene and transfer it to common wheat, genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from the cross of TA2026 × M389. The results indicated that TA2026 possessed a recessive powdery mildew resistance gene. This gene was mapped to the terminal portion of chromosome 5AmL and flanked by SSR marker loci Xcfd39 and Xgwm126. Eight RFLP markers previously mapped to the terminal chromosome 5AmL were converted into STS markers. Three loci, detected by MAG1491, MAG1493 and MAG1494, the STS markers derived from RFLP probes CDO1312, PSR164 and PSR1201, respectively, were linked to this resistance gene with Xmag1493 only 0.9 cM apart from it. In addition, the STS marker MAG2170 developed from the tentative consensus wheat cDNA encoding the Mlo-like protein identified a locus co-segregating with Xmag1493. This is the first recessive powdery mildew resistance gene identified on chromosome 5Am, and is temporarily designated pm2026. We have successfully transferred it to a tetraploid background, and this resistance stock will now be used as the bridge parent for its transfer to common wheat.  相似文献   

2.
Lebedeva TV  Peusha HO 《Genetika》2006,42(1):71-77
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity.  相似文献   

3.
Using hybrid analysis and test-clone method, 102 accessions of Triticum monococcum L. from the collection of the Vavilov All-Russia Institute of Plant Industry have been studied. This species of wheat has been found to by considerably polymorphic with respect to the resistance to the fungus Erysiphe graminis DC. f. sp. tritici Marchal. causing powdery mildew. The resistance of most accessions to the fungus population and clones is determined by dominant genes. In rare cases, the resistance was determined by recessive genes or one, two, or three oligogenes. A group of einkorn wheat accessions has been found in which the resistance to powdery mildew was determined by the same dominant factor or different but closely linked ones. Recessive resistance genes of T. monococcum differ from the recessive gene pm5 determining the resistance of T. aestivum plants. The genome of T. monococcum contains various genes of resistance to powdery mildew and is a potential source of effective genes to be used when selecting cultivated species of wheat for immunity.  相似文献   

4.
Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding programs by means of marker-assisted selection.  相似文献   

5.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

6.
Three novel low molecular weight (LMW) glutenin subunits from cultivated einkorn (Triticum monococcum L., AmAm, 2n = 2x = 14) were characterized by SDS-PAGE and molecular weights determined by MALDI-TOF-MS. Their coding genes were amplified and cloned with designed AS-PCR primers, revealing three complete gene sequences. All comprised upstream, open reading frame (ORF), downstream and no introns were present. The deduced amino acid sequences showed that all three genes, named as LMW-M1, LMW-M3 and LMW-M5, respectively, belonged to the LMW-i type subunits with the predicted molecular weight between 38.5206 and 38.7028 kDa. They showed high similarity with other LMW-i type genes from hexaploid bread wheats, but also displayed unique features. Particularly, LMW-M5 subunit contained an extra cysteine residue in the C-terminus except for eight conserved cysteines, which resulted from a single-nucleotide polymorphism (SNP) of the T–C transition, namely arginine → cysteine substitution at position 242 from the N-terminal end. This is the first report that the LMW-i subunit contained nine cysteines residues that could result in a more highly cross-linked and more elastic glutenin suggesting that LMW-M5 gene may associates with good quality properties. In addition, a total of 25 SNPs and one insertions/deletions (InDels) were detected among three LMW-i genes, which could result in significant functional changes in polymer formation of gluten. It is anticipated that these SNPs could be used as reliable genetic markers during wheat quality improvement. The phylogenetic analysis indicated that LMW-i type genes apparently differed from LMW-m and LMW-s type genes and diverged early from the primitive LMW-GS gene family, at about 12.92 million years ago (MYA) while the differentiation of Am and A genomes was estimated at 3.98 MYA.Q. Zhang had the same contribution to this work as the first author.  相似文献   

7.
8.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

9.
A set of differential isolates of Blumeria graminis f.sp. tritici was used to identify 10 alleles at the Pm3 locus on the short arm of chromosome 1A. Three F3 populations were used to map Pm3h in Abessi, Pm3i in line N324, and Pm3j alleles in GUS 122 relative to microsatellite markers. In total, 13 marker loci were mapped on chromosome 1AS and 1 marker on 1AL. The order of marker loci in the 3 mapping populations is consistent with previously published maps. All 3 alleles were mapped in the distal region of chromosome 1AS. The present study indicated that microsatellite markers are an ideal marker system for comparative mapping of alleles at the same gene locus in different mapping populations. The linkage distances of the closest microsatellite marker, Xgwm905-1A, to Pm3h, Pm3i, and Pm3j were 3.7 cM, 7.2 cM, and 1.2 cM, respectively. The microsatellite marker Xgwm905-1A cannot be used to distinguish between Pm3 alleles. The development of specific markers for individual Pm3 alleles is discussed on the basis of the recently cloned Pm3b allele.  相似文献   

10.

Mature embryos of einkorn (Triticum monococcum ssp. monococcum) and bread (Triticum aestivum L.) wheat were used for callus induction on media containing four different doses (0, 1, 2 and 4 mg L?1) of 2,4-D and dicamba supplemented with five different boron concentrations (0, 6.2, 12.4, 24.8, and 37.2 mg L?1). The obtained callus was transferred to culture media with three (0, 0.5, and 2 mg L?1) different BAP doses with five boron concentrations for further regeneration. The maximum callus weight in einkorn wheat was in culture media with 1 mg L?1 dicamba and 6.2 mg L?1 (3.71?±?0.13 g). Bread wheat had the maximum callus weight on culture media with 4 mg L?1 dicamba and 12.4 mg L?1 (3.46?±?0.40 g). The highest plantlet numbers were in only 2 mg L?1 BAP (2.92?±?0.88) for einkorn wheat and 0.5 mg L?1 BAP supplemented with 6.2 mg L?1 boron (3.71?±?1.12) for bread wheat. This indirect regeneration protocol using mature embryos of einkorn and bread wheat under boron stresses expected to be useful for future wheat breeding studies.

  相似文献   

11.
Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. Recently a novel PPO gene family consisting of the PPO-A2, PPO-B2, and PPO-D2 genes has been identified and shown to be expressed in wheat kernels. In this study, the sequences of these five kernel PPO genes were determined for the spring wheat cultivars Louise and Penawawa. The two cultivars were found to be polymorphic at each of the PPO loci. Three novel alleles were isolated from Louise. The Louise X Penawawa mapping population was used to genetically map all five PPO genes. All map to the long arm of homeologous group 2 chromosomes. PPO-A2 was found to be located 8.9 cM proximal to PPO-A1 on the long arm of chromosome 2A. Similarly, PPO-D1 and PPO-D2 were separated by 10.7 cM on the long arm of chromosome 2D. PPO-B2 mapped to the long arm of chromosome 2B and was the site of a novel QTL for polyphenol oxidase activity. Five other PPO QTL were identified in this study. One QTL corresponds to the previously described PPO-D1 locus, one QTL corresponds to the PPO-D2 locus, whereas the remaining three are located on chromosome 2B.  相似文献   

12.
QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)   总被引:5,自引:0,他引:5  
A population of F7 recombinant inbred lines (RILs) was made from a cross between susceptible (‘Santou’) and resistant (PI197088-1) lines of cucumber in order to study powdery mildew resistance loci. Susceptibility to powdery mildew in the F7 RIL individuals showed a continuous distribution from susceptible to resistant, suggesting that powdery mildew resistance is controlled by quantitative trait loci (QTLs). A QTL analysis identified two and three loci for powdery mildew resistance under 26 and 20°C conditions, respectively. One QTL was found in the same position under both temperature conditions. Therefore, it is more likely that one major QTL acts under both temperature conditions and that other QTLs are specific to the two temperature conditions. The above results suggest that the four QTLs are controlled in a different temperature manner, and that their combination played an important role in expressing a high level of resistance to powdery mildew in this cucumber population. Sequence-tagged site (STS) markers associated with each QTL were developed and would be useful for breeding a cucumber line with a high level of powdery mildew resistance. Y. Sakata and N. Kubo contributed equally to this work and are considered as first authors.  相似文献   

13.
14.
Powdery mildew is a common disease of field pea, Pisum sativum L., and is caused by the ascomycete fungus Erysiphe pisi. It can cause severe damage in areas where pea is cultivated. Today breeders want to develop new pea lines that are resistant to the disease. To make the breeding process more efficient, it is desirable to find genetic markers for use in a marker-assisted selection (MAS) strategy. In this study, microsatellites (SSR) were used to find markers linked to powdery mildew resistance. The resistant pea cultivar '955180' and the susceptible pea cultivar 'Majoret' were crossed and F2 plants were screened with SSR markers, using bulked segregant analysis. A total of 315 SSR markers were screened out of which five showed linkage to the powdery mildew resistance gene. No single marker was considered optimal for inclusion in a MAS program. Instead, two of the markers can be used in combination, which would result in only 1.6% incorrectly identified plants. Thus SSR markers can be successfully used in marker-assisted selection for powdery mildew resistance breeding in pea.  相似文献   

15.
Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.  相似文献   

16.
Powdery mildew (PMD) of soybean [Glycine max (L.) Merr.] is caused by the fungus Microsphaera diffusa. Severe infection of PMD on susceptible varieties often causes premature defoliation and chlorosis of the leaves, which can result in considerable yield losses under favorable environmental conditions for disease development in the field. A total of 334 F(7)-derived recombinant inbred lines (RILs) from a cross of a PMD susceptible soybean cultivar Wyandot and PMD-resistant PI 567301B were used for genetic mapping of PMD resistance in PI 567301B and for development of molecular markers tightly linked to the gene. The result of the PMD screening for each line in the field was in agreement with that in the greenhouse test. The genetic map containing the PMD resistance gene was constructed in a 3.3?cM interval flanked by two simple sequence repeat (SSR) markers on chromosome 16. The PMD resistance gene was mapped at the same location with SSR marker BARCSOYSSR_16_1291, indicating that there was no recombination between the 334 RILs and this marker. In addition, a single nucleotide polymorphism (SNP) marker developed by high-resolution melting curve analysis and a cleaved amplified polymorphic sequence (CAPS) marker with Rsa1 recognition site were used for the genetic mapping. These two markers were also mapped to the same genomic location with the PMD resistance gene. We validated three tightly linked markers to the PMD resistance gene using 38 BC(6)F(2) lines and corresponding BC(6)F(2:3) families. The three marker genotypes of the backcross lines predicted the observed PMD phenotypes of the lines with complete accuracy. We have mapped a putatively novel single dominant PMD resistance gene in PI 567301B and developed three new molecular markers closely linked to the gene. Molecular markers developed from this study may be used for high-throughput marker-assisted breeding for PMD resistance with the gene from PI 567301B.  相似文献   

17.
 The adaptability of Triticum aestivum to a large range of environments is partially due to genetic differences in sensitivity to vernalization. The most potent gene reducing the vernalization requirement in hexaploid wheat is Vrn-A1. An orthologous vernalization gene, designated Vrn-A m 1, was mapped in the diploid wheat Triticum monococcum between RFLP markers Xwg908 and Xabg702 on the long arm of chromosome 5AmL. The orthology of VrnA m 1 with Vrn-A1 (5A wheat, originally Vrn1), Vrn-D1 (5D wheat, originally Vrn3), Vrn-R1 (5R rye, originally Sp1) and Vrn-H1 (5H barley, originally Sh2) was shown by mapping RFLP markers linked to these vernalization genes on the T. monococcum linkage map. A second vernalization gene, designated Vrn-A m 2, was found in the distal region of chromosome 5AmL within a segment translocated from homoeologous group 4. This gene is completely linked to RFLP marker Xbcd402 and located between the same RFLP markers (Xβ-Amy-1 and Xmwg616) as the Vrn-H2 (originally Sh) locus in Hordeum vulgare. Received: 6 January 1998 / Accepted: 31 March 1998  相似文献   

18.
The chromosomal location of a suppressor for the powdery mildew resistance genes Pm8 and Pm17 was determined by a monosomic set of the wheat cultivar Caribo. This cultivar carries a suppressor gene inhibiting the expression of Pm8 in cv Disponent and of Pm17 in line Helami-105. In disease resistance assessments, monosomic F1 hybrids (2n=41) of Caribo x Disponent and Caribo x Helami-105 lacking chromosome 7D were resistant, whereas monosomic F1 hybrids involving the other 20 chromosomes, as well as disomic F1 hybrids (2n=42) of all cross combinations, were susceptible revealing that the suppressor gene for Pm8 and Pm17 is localized on chromosome 7D. It is suggested that genotypes without the suppressor gene be used for the exploitation of genes Pm8 and Pm17 in enhancing powdery mildew resistance in common wheat.  相似文献   

19.
Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F2 segregating population and F3 families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59–0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST–STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.  相似文献   

20.
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV 1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively. Received: 5 November 1999 / Accepted: 14 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号