首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Plasma reverse triiodothyronine (rT3) concentration was measured by radio immunoassay (RIA) in a group of 15 dogs. The mean rT3 concentration was 187 ng/100 ml which was 3 times higher than radioimmunoassayable triiodothyronine (T3) concentration. rT3 measurement in thyroid and peripheral venous plasma in 3 dogs showed that the unusually high circulating rT3 levels in this species could not be explained on the basis of augmented thyroidal rT3 secretion. Study of rT3-protein binding by equilibrium dialysis also failed to show any evidence of unusual rT3-protein interaction (rT3 free fraction was 2 — 3 times greater than in normal human serum). Among all the species examined so far (man, monkey, sheep, dog and rat), only in the dog are the circulating rT3 levels significantly higher than T3 suggesting that in this species the 5-deiodination, in marked contrast to the 5'-deiodination noted in several other species, is a major pathway normally involved in the initial monodeiodination of T4.  相似文献   

2.
Thyroid dysfunction is common in individuals with diabetes mellitus (DM) and may contribute to the associated cardiac dysfunction. However, little is known about the extent and pathophysiological consequences of low thyroid conditions on the heart in DM. DM was induced in adult female Sprague Dawley (SD) rats by injection of nicotinamide (N; 200 mg/kg) followed by streptozotocin (STZ; 65 mg/kg). One month after STZ/N, rats were randomized to the following groups (N = 10/group): STZ/N or STZ/N + 0.03 μg/mL T3; age-matched vehicle-treated rats served as nondiabetic controls (C). After 2 months of T3 treatment (3 months post-DM induction), left ventricular (LV) function was assessed by echocardiography and LV pressure measurements. Despite normal serum thyroid hormone (TH) levels, STZ/N treatment resulted in reductions in myocardial tissue content of THs (T3 and T4: 39% and 17% reduction versus C, respectively). Tissue hypothyroidism in the DM hearts was associated with increased DIO3 deiodinase (which converts THs to inactive metabolites) altered TH transporter expression, reexpression of the fetal gene phenotype, reduced arteriolar resistance vessel density, and diminished cardiac function. Low-dose T3 replacement largely restored cardiac tissue TH levels (T3 and T4: 43% and 10% increase versus STZ/N, respectively), improved cardiac function, reversed fetal gene expression and preserved the arteriolar resistance vessel network without causing overt symptoms of hyperthyroidism. We conclude that cardiac dysfunction in chronic DM may be associated with tissue hypothyroidism despite normal serum TH levels. Low-dose T3 replacement appears to be a safe and effective adjunct therapy to attenuate and/or reverse cardiac remodeling and dysfunction induced by experimental DM.  相似文献   

3.
The influence of zinc (Zn) on the serum levels of triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH) and sodium (Na), potassium (K), and calcium (Ca) was evaluated following ethanol toxicity to the rats. To achieve this, male Wistar rats (150–195 g) were given 3 ml of 30% ethanol orally, and zinc was given in the form of zinc sulfate (227 mg/l) in their drinking water daily for 8 weeks. Ethanol feeding resulted in a slight decrease in T3 and T4 levels and a significant increase in thyroid-stimulating hormone concentration, which may be due to the direct stimulatory effect of ethanol on thyroid. Interestingly, when zinc was given to these rats, all the above levels were brought quite close to their normal levels, thus indicating the positive role of zinc in thyroid hormone metabolism. Serum Zn and Ca levels were found to be reduced, but Na levels were raised upon ethanol feeding. Restoration of normal levels of these metals upon zinc supplementation to ethanol fed rats confirms that zinc has potential in alleviating some of the altered thyroid functions following ethanol administration.  相似文献   

4.
Perchlorate can competitively inhibit iodide uptake by the thyroid gland (TG) via the sodium/iodide symporter, consequently reducing the production of thyroid hormones (THs). Until recently, the effects of perchlorate on TH homeostasis are being examined through measurement of serum levels of TH, by immunoassay (IA)-based methods. IA methods are fast, but for TH analysis, they are compromised by the lack of adequate specificity. Therefore, selective and sensitive methods for the analysis of THs in TG are needed, for assessment of the effects of perchlorate on TH homeostasis. In this study, we developed a method for the analysis of six THs: l-thyroxine (T4), 3,3′,5-triiodo-l-thyronine (T3), 3,3′,5′-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2), 3,3′-diiodo-l-thyronine (3,3′-T2), and 3-iodo-l-thyronine (3-T1) in TG, using liquid chromatography (LC)–tandem mass spectrometry (MS/MS). TGs used in this study were from rats that had been placed on either iodide-deficient diet or iodide-sufficient diet, and that had either been provided with perchlorate in drinking water (10 mg/kg/day) or control water. TGs were extracted by pronase digestion and then analyzed by LC–MS/MS. The instrumental calibration range for each TH ranged from 1 to 200 ng/ml and showed a high linearity (r > 0.99). The method quantification limits (LOQs) were determined to be 0.25 ng/mg TG for 3-T1; 0.33 ng/mg TG for 3,3′- and 3,5-T2; and 0.52 ng/mg TG for rT3, T3, and T4. Rats were placed on an iodide-deficient or -sufficient diet for 2.5 months, and for the last 2 weeks of that period were provided either perchlorate (10 mg/kg/day) in drinking water or control water. Iodide deficiency and perchlorate administration both reduced TG stores of rT3, T3, and T4. In iodide-deficient rats, perchlorate exacerbated the reduction in levels of THs in TG. With the advances in analytical methodology, the use of LC–MS/MS for measurement of hormone levels in TG will allow more comprehensive evaluations of the hypothalamic-pituitary–thyroid axis.  相似文献   

5.
The luteinizing hormone releasing hormone analog D-Trp6-Pro9-Net-LHRH (LHRHa) inhibits rat testicular testosterone secretion. To determine whether LHRHa decreases serum testosterone concentrations solely by inhibiting gonadotropin secretion or, in addition, by influencing directly testicular testosterone biosynthesis, we examined the effects of LHRHa on the activities of 5 key testicular steroidogenic enzymes. Thirty hypophysectomized, hCG treated rats were given either LHRHa (1 μg sc/day) or saline during 7 days. The LHRHa treated animals exhibited a significant decrease of serum testosterone when compared to the control group (498 ± 37 ng/dl vs 2044 ± 105 ng/dl, mean ± SEM, P 〈0.001). 17-Hydroxyprogesterone serum levels were also decreased in the LHRHa treated rats (61 ± 6 ng/dl vs 93 ± 7 ng/dl, P 〈0.005), while serum progesterone levels were similar in both groups of animals. These changes in steroid concentrations were associated with decreases in the musomal enzyme activities of 17-hydroxylase (37 ± 9 vs 654 ± 41 pmol/mg protein/min, P 〈0.001), 17, 20-desmolase (103 ± 9 vs 522 ± 47 pmol/mg protein/min, P 〈0.001), 3β-hydroxysteroid dehydrogenase (1.7 ± 0.02 vs 4.1 ± 0.1 nmol/mg protein/min, P 〈0.001), aromatase (95 ± 7 vs 228 ± 6 pmol/mg protein/ min, P 〈0.001) and 17-ketosteroid reductase (167 ± 9 vs 290 ± 18 pmol/mg protein/min, P 〈0.01) in the LHRHa treated animals. These findings indicate that LHRHa can inhibit directly rat testicular testosterone biosynthesis.  相似文献   

6.
The effect of cold exposure caused by shearing on serum thyroid hormone (TH) concentrations in sheep kept at an ambient temperature of 8.5°C was studied. While the deep body temperature fell to the lowest level 4 h after shearing the concentration of triiodothyronine (T3) increased to a peak value at that time. Thyroxine (T4) and metabolically inactive reverse triiodothyronine (rT3) levels reached their peak value after 24 h. The T3T4 ratio reached a maximum at about 4 h and rT3T4 and rT3T3 ratios rose to maximum values about 24 h after shearing. This sequence of events suggest a biphasic response to cold—an immediate secretion of TH from the thyroid gland, followed by adaptive alteration in T3 and rT3 generation in the extrathyroidal tissues.  相似文献   

7.
Two independent conformations of the thyroinactive thyroid hormone metabolite, 3,3′,5′-triido-L-thyronine (rT3) were determined by X-ray diffraction methods. The conformations show significant difference in the lettering geometry when compared with those of the thyroactive thyroxine (T4) and 3,5,3′-triido-L-thyronine (T3). The diphenyl ether conformation of the two conformers of rT3 is an anti-skewed one, in which the torsion angels, φ (C5-C4-O4-Cl′) are 8° and ?6°, and φ′ are 86° and 87°. This conformation is in contrast to a twist-skewed one of T4 and T3. The difference in the binding abilities between T4, T3 and rT3 to thyroxine binding carrier proteins in serum or to a nuclear receptor protein may be explained by the characteristics solid-state conformations of these metabolites.  相似文献   

8.
The aim of this study was to see whether the inhibitory effect of propylthiouracil on thyroidal secretion of 3,5,3′-triiodothyronine (T3) and 3,3′,5′-triiodothyronine (rT3) could be reproduced in intensively stimulated thyroids, and to elucidate whether an increase in the fractional deiodination of thyroxine (T4) to T3 and rT3 during iodothyronine secretion might be responsible for the transient fall in the T4/T3 and T4/rT3 ratios in thyroid secretion seen in the early phase after stimulation of thyroid secretion.For this purpose T4, T3 and rT3 were measured in effluent from isolated dog thyroid lobes perfused in a non-recirculation system using a synthetic hormone free medium. 1 mmol/l propylthiouracil induced a significant reduction in thyroid-stimulating hormone (TSH) stimulated T3 and rT3 release while the release of T4 was unaffected. This supports our previous conclusion that T4 is partially monodeiodinated to T3 and rT3 during thyroid secretion. Infusion of 1 mmol/l propylthiouracil for 30 min or 3 mmol/l propylthiouracil for 120 min did not abolish the transient fall in effluent T4/T3 and T4/rT3 induced by TSH stimulation. Thus, this phenomenon seems not to depend on intrathyroidal iodothyromine deiodinating processes.  相似文献   

9.
《Endocrine practice》2007,13(6):615-619
ObjectiveTo assess the relationship between serum thyrotropin (thyroid-stimulating hormone or TSH) on one hand and thyroid-stimulating immunoglobulin (TSI), free thyroxine (T4), and triiodothyronine (T3) levels on the other in Graves’ disease, inasmuch as TSH may be suppressed in the presence of TSI because TSI may bind to the TSH receptor on the thyroid gland membrane and thus eliminate the need for circulating TSH for stimulating the thyroid gland.MethodsWe determined serum TSI levels in 37 women and 13 men with Graves’ disease, stratified into 4 groups on the basis of serum TSH levels irrespective of serum free T4 and T3 levels. Our reference ranges were 0.72 to 1.74 ng/dL for free T4, 80 to 200 ng/dL for T3, and to 4.0 μU/mL for TSH.ResultsMean serum TSI concentrations were highest (215% ± 28%) in patients with undetectable TSH levels (< 0.03 μU/mL) and lowest (103% ± 9%) in those with supernormal TSH concentrations (> 4.0 μU/mL). TSI levels were intermediate in the other study groups: 157% ± 16% in patients with subnormal though detectable TSH levels (0.03 to 0.39 μU/mL) and 125% ± 12% in those with normal TSH levels (0.4 to 4.0 μU/mL). Moreover, a progressive decline in TSI levels with increasing serum TSH concentrations was noted, along with a significant negative correlation (r = -0.45; P < 0.01) between serum TSI and TSH concentrations. Finally, relationships between free T4 and T3 levels on one hand and TSI or TSH levels on the other were not significant, with a considerable variability in free T4 and T3 levels being noted in individual study groups.ConclusionSerum TSH is frequently suppressed after treatment with antithyroid drugs or radioiodine (131I), irrespective of clinical thyroid function as expressed by increased, normal, or decreased free T4 and T3 concentrations. In an individual patient with Graves’ disease, the serum TSH level may be more reflective of the circulating TSI concentration than is thyroid gland function as expressed by free T4 and T3 concentrations and therefore may be as reliable a predictor of remission as TSI. (Endocr Pract. 2007;13:615-619)  相似文献   

10.
《Endocrine practice》2014,20(7):680-689
ObjectiveSulfate conjugation of thyroid hormones is an alternate metabolic pathway that facilitates the biliary and urinary excretion of iodothyronines and enhances their deiodination rate, leading to the generation of inactive metabolites. A desulfating pathway reverses this process, and thyromimetic effects have been observed following the parenteral administration of 3,5,3′-triiodothyronine (T3) sulfate (T3S) in rats. The present study investigated whether T3S is absorbed after oral administration in humans and if it represents a source of T3.MethodsTwenty-eight hypothyroid patients (7 men and 21 women; mean age, 44 ± 11 years) who had a thyroidectomy for thyroid carcinoma were enrolled. Replacement thyroid hormone therapy was withdrawn (42 days for thyroxine, 14 days for T3) prior to 131I remnant ablation. A single oral dose of 20, 40, 80 (4 patients/group), or 160 μg (16 patients/group) of T3S was administered 3 days before the planned administration of 131I. Blood samples for serum T3S and total T3 (TT3) concentrations were obtained at various times up to 48 hours after T3S administration.ResultsAt all T3S doses, serum T3S concentrations increased, reaching a peak at 2 to 4 hours and progressively returning to basal levels within 8 to 24 hours. The T3S maximum concentration (Cmax) and area under the 0-to 48-hour concentration-time curve (AUC0-48h) were directly and significantly related to the administered dose. An increase in serum TT3 concentration was observed (significant after 1 hour), and the concentration increased further at 2 and 4 hours and then remained steady up to 48 hours after T3S administration. There was a significant direct correlation between the TT3 AUC0-48h and the administered dose of T3S. No changes in serum free thyroxine (T4) concentrations during the entire study period were observed, whereas serum thyroid-stimulating hormone levels increased slightly at 48 hours, but this was not related to the dose of T3S. No adverse events were reported.Conclusion(1) T3S is absorbed following oral administration in hypothyroid humans; (2) after a single oral dose, T3S is converted to T3 in a dose-dependent manner, resulting in steady-state serum T3 concentrations for 48 hours; (3) T3S may represent a new agent in combination with T4 in the therapy of hypothyroidism, if similar conversion of T3S to T3 can be demonstrated in euthyroid patients who are already taking T4. (Endocr Pract. 2014;20:680-689)  相似文献   

11.
Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.  相似文献   

12.
Various parameters of thyroid function were studied in 27 rabbits, out of which 10 were immunized to produce antibodies against triiodothyronine (T3), 9 against thyroxine (T4) and 8 were normals. Estimations of T3, T4, Free T4 (FT4) and thyrotropin (TSH) in blood, qualitative and quantitative analysis of iodoamino acids in serum, protein bound iodine-131 (PB131I), butanol extractable iodine-125 (BE125I) and measurement of the disappearance rates of 125I-labelled T3 and T4 from plasma were done. In addition, glandular changes were also studied by measurement of 131I uptake, thyroid scanning and chromatographic analysis of hydrolysate of soluble iodoproteins. In T3 immunized animals, levels of T3 in serum increased by 38 to 125 times, levels of TSH also showed a significant rise (7.4 ± 1.2 vs 28 ± 9 ng/mL). Chromatographic analysis of iodoamino acids in serum as well as in the hydrolysate of the thyroid gland demonstrated a selective increase in synthesis of T3. Rate of disappearance of T3 from blood showed a significant decline. Thyroid glands in the immunized rabbits showed signs of hypertrophy and hyperplasia. Identical studies done in rabbits immunized to produce antibodies against T4 showed a similar pattern though of variable degree. Our studies indicate that the thyroid glands of the immunized rabbits undergo marked alterations resulting in selective increase in the synthesis and secretion of the particular thyroid hormone against which they were immunized. They do so under the influence of increased levels of TSH.  相似文献   

13.
The role of lactogenic hormones (prolactin, growth hormone, cortisol and thyroid hormone) on lactation yield in Mithun cows as well as their rhythmicity throughout the lactation cycle were studied in Mizoram (n = 4) and Nagaland (n = 7) strain of mithun (Bos frontalis). Blood samples were collected from all the animals from the day of calving to the complete dry off at an interval of 15 days. All the hormones were estimated in the serum by commercially available ELISA kits. Plasma level of cortisol (μg/dl), growth hormone (GH, in ng/ml), prolactin (PRL, in μIU/ml), triiodothyronine (T3, in nmol/μl) and thyroxin (T4, in ng/ml) were 20.84 ± 0.29, 28.08 ± 0.56, 9.87 ± 0.20, 27.82 ± 0.56 and 51.33 ± 0.48, respectively, in mithun irrespective of strains during the lactation period. Levels of all the hormones varied significantly (p ≤ 0.01) during different days of lactation cycle but, there was no significant difference among strain. Levels of PRL, GH, cortisol and T3 were significantly (p < 0.01) higher around calving and declined sharply. The hormones remained in almost steady state during mid-lactation and declined during late lactation. All the hormones stated above were positively correlated with lactational yield thus their role on lactogenesis and galactopoiesis was established.  相似文献   

14.
There is increasing experimental evidence of the nongenomic action of thyroid hormones mediated by receptors located in the plasma membrane or inside cells. The aim of this work was to characterize the reverse T3 (rT3) action on calcium uptake and its involvement in immature rat Sertoli cell secretion. The results presented herein show that very low concentrations of rT3 are able to increase calcium uptake after 1 min of exposure. The implication of T-type voltage-dependent calcium channels and chloride channels in the effect of rT3 was evidenced using flunarizine and 9-anthracene, respectively. Also, the rT3-induced calcium uptake was blocked in the presence of the RGD peptide (an inhibitor of integrin-ligand interactions). Therefore, our findings suggest that calcium uptake stimulated by rT3 may be mediated by integrin αvβ3. In addition, it was demonstrated that calcium uptake stimulated by rT3 is PKC and ERK-dependent. Furthermore, the outcomes indicate that rT3 also stimulates cellular secretion since the cells manifested a loss of fluorescence after 4 min incubation, indicating an exocytic quinacrine release that seems to be mediated by the integrin receptor. These findings indicate that rT3 modulates the calcium entry and cellular secretion, which might play a role in the regulation of a plethora of intracellular processes involved in male reproductive physiology.  相似文献   

15.
The nature of the conversion of thyroxine (T4) to triiodothyronine (T3) and reverse triiodothyronine (rT3) was investigated in rat liver homogenate and microsomes. A 6-fold rise of T3 and 2.5-fold rise of rT3 levels determined by specific radioimmunoassays was observed over 6 h after the addition of T4. An enzymic process is suggested that converts T4 to T3 and rT3. For T3 the optimal pH is 6 and for rT3, 9.5. The converting activity for both T3 and rT3 is temperature dependent and can be suppressed by heat, H2O2, merthiolate and by 5-propyl-2-thiouracil. rT3 and to a lesser degree iodide, were able to inhibit the production of T3 in a dose related fashion. Therefore the pH dependendy, rT3 and iodide may regulate the availability of T3 or rT3 depending on the metabolic requirements of thyroid hormones.  相似文献   

16.
The effect of insulin-induced hypoglycemia on serum thyroid hormone concentrations was studied in nine healthy individuals. Before, during and after the hypoglycemia blood samples were taken for measurement of the concentrations of glucose, thyroxine (T4), triiodothyronine (T3), reverse triiodothyronine (rT3), catecholamines and pituitary hormones.There was no change in the mean serum T4 level (± the standard error of the mean) of 67 ± 2 μg/l. However, the T3 concentrations rose from a mean basal level of 1.86 ± 0.06 μg/l to a mean peak of 2.51 ± 0.21 μg/l (P < 0.01) at 45 minutes after the insulin injection, and the rT3 concentrations fell from a mean basal level of 0.184 ± 0.008 μg/l to a mean nadir of 0.171 ± 0.022 μg/l (not a significant change). The mean peak epinephrine level was 545 ± 103 ng/l and it occurred between 30 and 45 minutes after the insulin injection; the mean peak norepinephrine level was 584 ± 114 ng/l and it occurred between 30 and 90 minutes after the injection. The growth hormone levels reached a mean peak of 26.1 ± 4.8 μg/l and the plasma cortisol levels rose to 215 ± 9 μg/l. The mean basal prolactin level was 8.5 ± 0.9 μg/l; in five subjects there was a rise to a mean peak of 50.6 ± 14.6 μg/l, whereas in the remaining four no significant increase occurred. No correlation was found between the changes in the serum T3 concentration and any of the other factors studied.It was concluded that acute hypoglycemia is associated with a rapid increase in the serum T3 concentration.  相似文献   

17.
L-thyroxine (L-T4) potentiates the antiviral activity of human interferon-γ (IFN-γ) in HeLa cells. We have added thyroid hormone and analogues to cells either 1) for 24 h pretreatment prior to 24 h of IFN-γ (1.0 IU/ml), 2) for 24 h cotreatment with IFN-γ, 3) for 4 h, after 20 h cell incubation with IFN-γ, alone, or 4) for 24 h pretreatment and 24 h cotreatment with IFN-γ. The antiviral effect of IFN-γ was then assayed. L-T4 potentiated the antiviral action of IFN-γ by a reduction in virus yield of more than two logs, the equivalent of a more than 100-fold potentiation of the IFN's antiviral effect. 3,3′,5-L-triiodothyronine (L-T3) was as effective as L-T4 when coincubated for 24 h with IFN-γ but was less effective than L-T4 when coincubated for only 4 h. D-T4, D-T3, 3,3′,5-triiodothyroacetic acid (triac), tetraiodothyroacetic acid (tetrac), and 3,5-diiodothyronine (T2) were inactive. When preincubated with L-T4 for 24 h prior to IFN-γ treatment, tetrac blocked L-T4 potentiation, but, when coincubated with L-T4 for 4 h after 20 h IFN-γ, tetrac did not inhibit the L-T4 effect. 3,3′,5′-L-triiodothyronine (rT3) also potentiated the antiviral action of IFN-γ, but only in the preincubation model. Furthermore, the effects of rT3 preincubation and L-T3 coincubation were additive, resulting in 100-fold potentiation of the IFN-γ effect. When L-T4, L-T3, or rT3, plus cycloheximide (5 μg/ml), was added to cells for 24 h and then removed prior to 24 h IFN-γ exposure, the potentiating effect of the three iodothyronines was completely inhibited. In contrast, IFN-γ potentiation by 4 h of L-T4 or L-T3 coincubation was not inhibited by cycloheximide (25 μg/ml). These studies demonstrate two mechanisms by which thyroid hormone can potentiate IFN-γ's effect: 1) a protein synthesis-dependent mechanism evidenced by enhancement of IFN-γ's antiviral action by L-T4, L-T3, or rT3 preincubation, and inhibition of enhancement by tetrac and cycloheximide, and 2) a protein synthesis-independent (posttranslational) mechanism, not inhibited by tetrac or cycloheximide, demonstrated by 4 h coincubation of L-T4 or L-T3, but not rT3, with IFN-γ. The protein synthesis-dependent pathway is responsive to rT3, a thyroid hormone analogue generally thought to have little effect on protein synthesis. A posttranslational mechanism by which the antiviral action of IFN-γ can be regulated has not previously been described. © 1996 Wiley-Liss, Inc.  相似文献   

18.

Background

Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism.

Methods

Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 ? or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N?=?8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver.

Results

Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue in line with altered functional and metabolic traits of hyper- and hypothyroidism.

Conclusions

These data demonstrate that the phenotypes of hypo- and hyperthyroidism differ between male and female mice and indicate that sex is an important modifier of phenotypic manifestations.
  相似文献   

19.
Circulating tri-iodothyronine (T3) and thyroxine (T4) concentrations were determined after 6 wk of zinc treatment to carbontetrachloride (CCl4) intoxicated male albino rats. Concentrations of T3 were observed to be significantly depressed following CCl4 treatment alone. On the contrary, no significant change was noticed in the concentrations of T4 when compared to controls. However, zinc administration to hepatotoxic animals resulted in restoring the T3 activity to within normal limits, thus indicating the indirect effects of zinc on the regulation of thyroid hormone concentrations. The activities of all the serum and hepatic marker enzymes were found to be significantly elevated following CCl4 treatment. However, following zinc supplementation to these intoxicated animals, the levels of the marker enzymes decreased significantly when compared to the CCl4-treated animals. A similar trend was seen in the case of lipid peroxidation following zinc treatment.  相似文献   

20.
Plasma thyroxine (T4), triiodothyronine (T3) and thyrotropin (TSH) levels were monitored in 10 healthy euthyroid male subjects of the age group 20 to 30 years before and during heat and cold acclimatisation schedule in a sequential manner. The subjects were exposed to 45C DB and 30% relative humidity in a hot chamber for 2 hours daily for 8 consecutive days. Subsequently they were exposed to cold for 4 hours daily at 10C for 21 days. The mean plasma T4 and T3 concentration before exposure to heat were 7.87±0.82 ug/dl and 159.8±9.1 ng/dl respectively. A significant decrease in both T4 (p<0.05) and T3 (p<0.01) levels to mean values of 6.4±0.76g/dl and 129±7.9 ng/dl was recorded on day 4 of exposure to heat. Further significant decrease (p<0.05) over the preceding T3 levels was observed on day 8 of heat exposure. Plasma T4 and T3 on day 21 of cold exposure was not significantly different from the levels reckoned after last day of heat exposure but was significantly lower than the pre-exposure values. Throughout the thermal stress schedule there was no change in the TSH levels. These observations suggest that a decrease in thyroid hormone levels during exposure to heat might be an adaptive process which continues even during cold acclimatisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号