首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of racemic and enantiomerically pure 3-butanamidoquinuclidines ((+/-)-Bu, (R)-Bu and (S)-Bu), (1-3) and 3-benzamidoquinuclidines ((+/-)-Bz, (R)-Bz, and (S)-Bz), (4-6) is described. The N-quaternary derivatives, N-benzyl-3-butanamidoquinuclidinium bromides ((+/-)-BnlBu, (R)-BnlBu and (S)-BnlBu), (7-9) and N-benzyl-3-benzamidoquinuclidinium bromides ((+/-)-BnlBz, (R)-BnlBz and (S)-BnlBz), (10-12) were subsequently synthesized. The interaction of the four enantiomerically pure quaternary derivatives with horse serum butyrylcholinesterase (BChE) was tested. All tested compounds inhibited the enzyme. The best inhibitior of the enzyme was (S)-BnlBz with a K(i) = 3.7 microM. The inhibitor potency decreases in order (S)-BnlBz > (R)-BnlBz > (R)-BnlBu > (S)-BnlBu.  相似文献   

2.
The effect of phosphorylation on the shape of tyrosine hydroxylase (TH) was studied directly using gel filtration and indirectly using electrospray ionization mass spectrometry. Phosphorylation of Ser(19) and Ser(40) produced a TH molecule with a more open conformation than the non-phosphorylated form. The conformational effect of Ser(19) phosphorylation is less pronounced than that of the Ser(40) phosphorylation. The effect of Ser(19) and Ser(40) phosphorylation appears to be additive. Binding of dopamine produced a more compact form when compared with the non-dopamine-bound TH. The interdependence of Ser(19) and Ser(40) phosphorylation was probed using electrospray ionization mass spectrometry. The rate constants for the phosphorylation of Ser(19) and Ser(40) were determined by electrospray ionization mass spectrometry using a consecutive reaction model. The rate constant for the phosphorylation of Ser(40) is approximately 2- to 3-fold higher if Ser(19) is already phosphorylated. These results suggest that phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to allow increased accessibility of Ser(40) to kinases.  相似文献   

3.
Organophosphorus acid anhydrolase (OPAA) catalyzes the hydrolysis of p-nitrophenyl analogs of the organophosphonate nerve agents, sarin and soman. The enzyme is stereoselective toward the chiral phosphorus center by displaying a preference for the R(P)-configuration of these analogs. OPAA also exhibits an additional preference for the stereochemical configuration at the chiral carbon center of the soman analog. The preferred configuration of the chiral carbon center is dependent upon the configuration at the phosphorus center. The enzyme displays a two- to four-fold preference for the R(P)-enantiomer of the sarin analog. The k(cat)/K(m) of the R(P)-enantiomer is 250 M(-1) s(-1), while that of the S(P)-enantiomer is 110 M(-1) s(-1). The order of preference for the stereoisomers of the soman analog is R(P)S(C) > R(P)R(C) > S(P)R(C) > S(P)S(C). The k(cat)/K(m) values are 36,300 M(-1)s(-1), 1250 M(-1) s(-1), 80 M(-1) s(-1) and 5 M(-1) s(-1), respectively. The R(P)S(C)-isomer of the soman analog is therefore preferred by a factor of 7000 over the S(P)S(C)-isomer.  相似文献   

4.
The crosslinking of membrane proteins of human erythrocytes by diamide (diazene dicarboxylic acid bis(N,N-dimethylamide) ) was quantified by 4% polyacrylamide gel electrophoresis in 1% sodium dodecyl sulfate. The relation between the crosslinking of membrane proteins and erythrocyte functions (rheological and oxygen transporting) was quantitatively examined. (i) The crosslinking of membrane protein was induced by diamide, without changing the shape and the contents of intracellular organic phosphates (adenylates and 2,3-diphosphoglycerate). The intensity of spectrin 2 in SDS-polyacrylamide gel electrophoresis decreased proportionally to diamide concentration. The percentage decrease in spectrin 2 (using band 3 as an internal standard) was the most appropriate indicator for crosslinking ("% crosslinking'). (ii) The suspension viscosity of erythrocytes increased in proportion to the percentage of crosslinking, in the range of applied shear rates of 3.76-752 s-1. (iii) Erythrocyte deformability (measured by a high-shear rheoscope) was reduced by the crosslinking. The change was detectable even at 5% crosslinking. (iv) Rouleaux formation (measured by a television image analyzer combined with a low-shear rheoscope) was inhibited by the crosslinking. The inhibition was also sensitively detected at more than 5% crosslinking. (v) Hemoglobin in erythrocytes was chemically modified by higher dose of diamide (probably by the binding of diamide with sulfhydryl groups). Also the oxygen affinity of hemoglobin increased and the heme-heme interaction decreased. (vi) The reduction of the crosslinking of membrane proteins by dithiothreitol apparently reversed the intensity of spectrin bands in SDS-polyacrylamide gel electrophoresis and the erythrocyte functions (the suspension viscosity and the deformability), though not completely.  相似文献   

5.
A novel biosensor for superoxide radical (O(2)(*-)) detection based on Pseudomonas aeruginosa azurin immobilized on gold electrode was designed. The rate constant of azurin reduction by O(2)(*-) was found to be 10(5)M(-1)s(-1) in solution and five times lower, i.e., 0.2 x 10(5)M(-1)s(-1), for azurin coupled to gold by 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP). The electron transfer rate between the protein and the electrode ranged from 2 to 6s(-1). The sensitivity of this biosensor to O(2)(*-) was 6.8 x 10(2)Am(-2)M(-1). The response to the interference substances, such as uric acid, H(2)O(2), and dimethylsulfoxide was negligible below 10 microM. The electrode was applied in three O(2)(*-) generating systems: (i) xanthine oxidase (XOD), (ii) potassium superoxide (KO(2)), and (iii) stimulated neutrophil granulocytes. The latter was compared with luminol-amplified chemiluminescence. The biosensor responded to O(2)(*-) in all three environments, and the signals were antagonized by superoxide dismutase.  相似文献   

6.
Microcalorimetry has been used to determine enthalpy changes for the hydrolysis of a series of oligosaccharides. High-pressure liquid chromatography was used to determine the extents of reaction and to check for any possible side reactions. The enzyme glucan 1,4-alpha-glucosidase was used to bring about the following hydrolysis reactions: (A) maltose(aq) + H2O(liq) = 2D-glucose(aq); (B) maltotriose(aq) + 2H2O(liq) = 3D-glucose(aq); (C) maltotetraose(aq) + 3H2O(liq) = 4D-glucose(aq); (D) maltopentaose(aq) + 4H2O(liq) = 5D-glucose(aq); (E) maltohexaose(aq) + 5H2O(liq) = 6D-glucose(aq); (F) maltoheptaose(aq) + 6H2O(liq) = 7D-glucose(aq); (G) amylose(aq) + nH2O(liq) = (n + 1) D-glucose(aq); and (H) panose(aq) + 2H2O(liq) = 3D-glucose(aq); (J) isomaltotriose(aq) + 2H2O(liq) = 3D-glucose(aq). The enzyme beta-fructofuranosidase was used for the reactions: (K) raffinose(aq) + H2O(liq) = alpha-D-melibiose(aq) + D-fructose(aq); and (L) stachyose(aq) + H2O(liq) = o-alpha-D-galactopyranosyl-(1----6)- alpha-o-D-galactopyranosyl-(1----6)-alpha-D-glucopyranose + D-fructose(aq). The results of the calorimetric measurements (298.15 K, 0.1 M sodium acetate buffer, pH 4.44-6.00) are: delta H0A = -4.55 +/- 0.10, delta H0B = -9.03 +/- 0.10, delta H0C = -13.79 +/- 0.15, delta H0D = -18.12 +/- 0.10, delta H0E = -22.40 +/- 0.15, delta H0F = -26.81 +/- 0.20, delta H0H = 1.46 +/- 0.40, delta H0J = 11.4 +/- 2.0, delta H0K = -15.25 +/- 0.20, and delta H0L = -14.93 +/- 0.20 kJ mol-1. The enthalpies of hydrolysis of two different samples of amylose were 1062 +/- 20 and 2719 +/- 100 kJ mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The Km and Vmax values for primers d(pA)n, d(pT)n, r(pA)n, r(pU)n where n = 1-16, were compared. The Km values for minimal primers dTMP, dAMP, rUMP, rAMP were found to be 48, 71, 602 and 602 microM, respectively. The Vmax value for any NMP made up approximately 7% of that for (pN)10. The lengthening of any primer per one mononucleotide unit for n from 1 to 10 resulted in the decrease of the Km value 1.8-fold and the increase of the Vmax value 1.35-fold. The ratios of the Km values for primers r(pA)n-d(pA)n and r(pU)n-d(pT)n were 7.5 and 12.5, respectively, for any n. The Km value for [d[pT)8]r(pU) primer was the same as for r(pU)9, but not for d(pT)9. Decanucleotide [d(Tp)9]ddT interacted with the polymerase competitively to the template, but not to the primer. The primer's 3'-OH group was supposed to form the hydrogen bond with the enzyme. The absence of 3'-hydroxygroup in [d(Tp)9]ddT resulted in its inability to compete effectively with the primer. The difference of the affinity of ribo- and deoxyriboprimers is due, apparently, to the existence of the different conformation of the furanose rings in the ribose and deoxyribose.  相似文献   

8.
Thermal denaturation and aggregation of beta(L)-crystallin from bovine lens have been studied using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the DLS data, the distribution of the beta(L)-crystallin aggregates by their hydrodynamic radius (R(h)) remains monomodal to the point of precipitating aggregates (sodium phosphate, pH 6.8; 100 mM NaCl; 60 degrees C). The size of the start aggregates (R(h,0)) and duration of the latent stage (t(0)) leading to the formation of the start aggregates have been determined from the light scattering intensity versus the hydrodynamic radius plots and the dependences of R(h) on time. The R(h,0) value remains constant at variation of the beta(L)-crystallin concentration, whereas the t(0) value increases with diminishing beta(L)-crystallin concentration. The suppression of beta(L)-crystallin aggregation by alpha-crystallin is connected with the decrease in the R(h,0) value and increase in the t(0) value. In the presence of alpha-crystallin the aggregate population is split into two components. The first component is represented by stable aggregates whose size remains constant in time. The aggregates of the other kind grow until they reach the size characteristic of aggregates prone to precipitation. The DSC data show that alpha-crystallin has no appreciable influence on thermal denaturation of beta(L)-crystallin.  相似文献   

9.
The enantiomers of formoterol (R;R and S;S) and their diastereomers (R;S and S;R) were synthesized and purified using a new procedure which required the preparation of the (R;R)- and (S;S)-forms of N-(1-phenylethyl)-N-(1-(p-methoxyphenyl)-2-propyl)-amine as important intermediates. The enantiomeric purity obtained was greater than 99.3%, usually greater than 99.7%. The four stereoisomers were examined with respect to their ability to interact in vitro with beta-adrenoceptors in tissues isolated from guinea pig. The effects measured were (1) relaxation of the tracheal smooth muscle (mostly beta 2), (2) depression of subtetanic contractions of the soleus muscle (beta 2), and (3) increase in the force of the papillary muscle of the left ventricle of the heart (beta 1). All enantiomers caused a concentration-dependent and complete relaxation of the tracheal smooth muscle which was inhibited by propranolol. The order of potency was (R;R) much greater than (R;S) = (S;R) greater than (S;S). There was a 1,000-fold difference in potency between the most and the least potent isomer. The presence of the (S;S)-isomer did not affect the activity of the (R;R)-isomer on the tracheal smooth muscle. Also on the skeletal and cardiac muscles (R;R)-formoterol was more potent than its (R;S)-isomer. The selectivity for beta 2-adrenoceptors appeared to be slightly higher for the (R;R)-isomer than for the (R;S)-isomer. The potency of the (S;R)- and (S;S)-isomers on the papillary muscle was too low to be determined accurately.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
The Km and vmax values for oligothymidylates d(pT)2-16 in reaction of 3'-5'-exonuclease hydrolysis catalyzed by Klenow fragment were measured in the absence and presence of poly(dA) template without the poly(dA), the Km values for oligonucleotides are slightly dependent on their length. The rate of oligothymidylates hydrolysis increases with their length and for d(pT)16 it is about 190-times higher than for d(pT)2. The addition on poly(dA) does not lead to an essential change of the Km values for d(pT)2-16, but raises the rate of d(pT)2-7 hydrolysis 2-17-fold and at the same time lowers the efficiency of d(pT)8-16 hydrolysis. The Km values for d(pC)10, d(pA)19 and d(pT)10 are nearly the same. However the velocity of d(pC)10 hydrolysis is approximately 1,2 and 7,8-times higher than for d(pA)10 and d(pC)10, respectively d(pC)10, d(pA)10 and d(pT)10 under conditions of interaction with the template-binding site raise the rate of hydrolysis of d(pT)2 combined with the exonuclease center, with various efficiency. Under similar conditions, d(pT)8, d(pT)10 and d(pT)16 as templates activated hydrolysis of d(pT)2. The dependence of the Klenow fragment exonuclease activity both on the length and structure of the template and on the length of the hydrolyzed oligonucleotide was suggested.  相似文献   

12.
The effects of kyotorphin (Tyr-Arg) on CA1 and CA3 field responses were studied on rat hippocampal slice preparations. Slice perfusion with 10(-6)-10(-4) M of kyotorphin resulted in reactivity changes both in mossy fibers (CA3) and Schaffer collaterals (CA1). The principal effect was the increase in pop-spike amplitude. Kyotrophin (10(-6)-10(-5) M) and metenkephalin (10(-7)-10(-6) M) were found to produce similar reactivity changes (facilitation) in CA1 region of most preparations. However, kyotorphin effect, in contrast to enkephalin-induced facilitation was not blocked by naloxone. The data suggest that the mechanisms of kyotorphin action in the hippocamp are not related to endogenous enkephalin release.  相似文献   

13.
We report the results of NMR studies and computer simulations of potent antagonists reflective of the alpha(IIb)beta(3) receptor-bound conformations. The peptides c[Mpa-(15)N-Arg(1)-(15)N-Gly(2)-(15)N-Asp(3)-(15)N-Phe(4)-(15)N-Arg(5)-Cys]-NH(2) (Phe-Arg analog) (Mpa: 3-mercaptopropionic acid) and c[Mpa-(15)N-Arg(1)-(15)N-Gly(2)-(15)N-Asp(3)-(15)N-Asp(4)-(15)N-Val(5)-Cys]-NH(2) (Asp-Val analog) were subjected to (15)N-edited NMR experiments to study the conformations of these peptides in the absence and in the presence of alpha(IIb)beta(3) receptor. The NMR studies of the Phe-Arg analog, a selective alpha(IIb)beta(3) antagonist, resulted in distinctly different experimental data in the presence and absence of the receptor. The computer simulations for this peptide resulted in one large family of structures consistent with the experimental data. This conformation suggests a type I beta-turn spanning residues Arg(1) and Gly(2) when bound to the receptor and we were able to establish a model for the three dimensional arrangement of the pharmacophores. The studies on the Asp-Val analog, an alpha(v)beta(3) antagonist that binds to the alpha(IIb)beta(3) with moderate affinity, resulted in conformations that are not as well defined as those for the Phe-Arg analog but are consistent with the model established for this analog. These results are important for the design of novel alpha(IIb)beta(3) antagonists.  相似文献   

14.
15.
The bioactivity of interleukin-6 (IL-6) was found to be dramatically reduced in fluids from sites of inflammation. Here, we provide evidence that the neutrophil-derived serine proteases elastase, proteinase 3 and cathepsin G are mainly involved in its degradation and subsequent inactivation. The initially hydrolyzed peptide bonds were detected to be Val(11)-Ala(12) and Leu(19)-Thr(20) (elastase), Phe(78)-Asn(79) (cathepsin G) and Ala(145)-Ser(146) (proteinase 3). The soluble IL-6 receptor elicits a protective effect against the IL-6 inactivation by cathepsin G only. The inactivation of IL-6 by neutrophil-derived serine proteases might act as a feedback mechanism terminating the IL-6-induced activation of neutrophils.  相似文献   

16.
Nitrite and SCN(-) in saliva can mixes with H(2)O(2) in the stomach. The mixing can result in the formation of ONOOH. It is not yet known how salivary SCN(-) reacts with ONOOH. An objective of the present study was to elucidate the reaction between ONOOH and SCN(-). In nitrite/H(2)O(2) systems at pH 2, SCN(-) inhibited the consumption of nitrite and the formation of O(3)(-). SCN(-) enhanced the decomposition of ONOOH and H(2)O(2) in HNO(2)/H(2)O(2) systems. Accompanying the reactions, sulfate was formed, suggesting that ONOOH oxidized SCN(-). SCN(-) inhibited the nitration of phenolics induced by HNO(2)/H(2)O(2). The inhibition is discussed taking SCN(-)-dependent reduction of ONOOH to HNO(2) into consideration. SCN(-) also inhibited H(2)O(2)-induced consumption of nitrite and nitration of phenolics in acidified saliva. The result obtained in this study suggests that salivary SCN(-) can reduce ONOOH to O(2)(-)/HNO(2) inhibiting nitrating reactions in the stomach.  相似文献   

17.
Antitumour, antifertility and histopathological investigations were carried out on male rats by the use of organotin complexes. The organotin complexes were synthesized by the alkylation of [Sn(TAML(n))Cl(2)] (n=1-4 and TAML(n) represents the tetraazamacrocyclic ligands) in the presence of CH(3)I or C(2)H(5)Br. The structures of all the complexes have been established on the basis of elemental analyses, conductivity measurements, IR, (1)H NMR, (13)C NMR, (119)Sn NMR and X-ray spectral data. The antitumour effect of the compounds was examined on swiss mice. The results obtained clearly indicated that the compounds, [C(2)H(5)Sn(TAML(3))C(5)H(5)N] and [C(2)H(5)Sn(TAML(4))C(5)H(5)N] display effective antitumour activity. The emphasis has been given on in vivo study on male albino rats (Rattus norvegicus) by performing serum analyses, blood analyses and fertility test.  相似文献   

18.
Z Mezei  A Gecse  G Telegdy 《Prostaglandins》1988,36(3):399-408
Somatostatin (10(-9) M) significantly elevated the synthesis of thromboxane B2 in rat platelets. The transformation of arachidonic acid to active lipoxygenase metabolites was suppressed by somatostatin (10(-9) and 10(-8) M). The ratio of the lipoxygenase/cyclooxygenase products was significantly reduced by the polypeptide (10(-9) and 10(-8) M) in rat platelets. Higher concentrations (10(-7), 10(-6) and 10(-5) M) of somatostatin did not modify the lipoxygenase pathway of the platelets. The synthesis of the vasoconstrictor - proaggregatory cyclooxygenase products was stimulated by the polypeptide (10(-9) and 10(-8) M), while the formation of vasodilatator - antiaggregatory cyclooxygenase metabolites was induced by higher concentrations of somatostatin (10(-7) and 10(-6) M). Somatostatin might act on the deacylation process of phospholipids, reducing the free arachidonic acid substrate level, resulting in a lower lipoxygenation rate in the platelets, which could be responsible for the increased formation of thromboxane. The contradictory results reported by others concerning the action of somatostatin on the platelet function might be explained by our results that the effect of somatostatin depends on the applied dose.  相似文献   

19.
The Arabidopsis thaliana S-adenosylmethionine decarboxylase (AdoMetDC) cDNA (GenBank(TM) U63633) was cloned, and the AdoMetDC protein was expressed, purified, and characterized. The K(m) value for S-adenosylmethionine (AdoMet) is 23.1 microM and the K(i) value for methylglyoxal bis-(guanylhydrazone) (MGBG) is 0.15 microM. Site-specific mutagenesis was performed on the AdoMetDC to introduce mutations at conserved cysteine (Cys(50), Cys(83), and Cys(230)) and lysine(81) residues, chosen by examination of the conserved sequence and proved to be involved in enzymatic activity by chemical modification. The AdoMetDC mutants K81A and C83A retained up to 60 and 10% of wild type activity, respectively, demonstrating that lysyl and sulfhydryl groups are required for full catalytic activity. However, changing Cys(50) and Cys(230) to alanine had minimal effects on the catalytic activity. Changing Lys(81) to alanine produced an altered substrate specificity. When lysine was used as a substrate instead of AdoMet, the substrate specificity for lysine increased 6-fold. The K(m) value for AdoMet is 11-fold higher than that of the wild type, but the V(max) value is more than 60%. Taken together, the results suggest that the lysine(81) residue is critical for substrate binding.  相似文献   

20.
Solution structures of complexes between the isolated A (IIA(Man)) and B (IIB(Man)) domains of the cytoplasmic component of the mannose transporter of Escherichia coli have been solved by NMR. The complex of wild-type IIA(Man) and IIB(Man) is a mixture of two species comprising a productive, phosphoryl transfer competent complex and a non-productive complex with the two active site histidines, His-10 of IIA(Man) and His-175 of IIB(Man), separated by approximately 25A. Mutation of the active site histidine, His-10, of IIA(Man) to a glutamate, to mimic phosphorylation, results in the formation of a single productive complex. The apparent equilibrium dissociation constants for the binding of both wild-type and H10E IIA(Man) to IIB(Man) are approximately the same (K(D) approximately 0.5 mM). The productive complex can readily accommodate a transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the Nepsilon2 atom of His-10 of IIA(Man) and the Ndelta1 atom of His-175 of IIB(Man) with negligible (<0.2A) local backbone conformational changes in the immediate vicinity of the active site. The non-productive complex is related to the productive one by a approximately 90 degrees rotation and approximately 37A translation of IIB(Man) relative to IIA(Man), leaving the active site His-175 of IIB(Man) fully exposed to solvent in the non-productive complex. The interaction surface on IIA(Man) for the non-productive complex comprises a subset of residues used in the productive complex and in both cases involves both subunits of IIA(Man). The selection of the productive complex by IIA(Man)(H10E) can be attributed to neutralization of the positively charged Arg-172 of IIB(Man) at the center of the interface. The non-productive IIA(Man)-IIB(Man) complex may possibly be relevant to subsequent phosphoryl transfer from His-175 of IIB(Man) to the incoming sugar located on the transmembrane IIC(Man)-IID(Man) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号