首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D Swain  D N De 《Stain technology》1990,65(4):197-204
A trichrome staining technique using safranin-indigo-picrocarmine (SIPC) can be used to distinguish the various stages of the cell cycle in onion root tip. When the tissue was fixed first in formalin followed by picric acid and stained in SIPC, a clear differentiation of interphase nuclei into four color classes, viz., green, orange, red and brown can be recorded. Replacing crystal violet for safranin produces a similar pattern of differentiation of interphase nuclei into green, light blue, blue and deep blue. Autoradiographic study using 3H-thymidine as a DNA precursor demonstrates the reliability of the SIPC staining technique. All the orange and red nuclei are found to be labelled and therefore are in S phase of the cell cycle. Almost all the green nuclei are unlabelled and may be assigned to G1. The larger brown nuclei which are mostly unlabelled can be considered in G2 phase.  相似文献   

2.
以自然同步化的多头绒泡菌(Physarum polycephalumL.)为材料,经抗cyclinB1抗体的免疫印迹和免疫电镜实验观察结果表明,多头绒泡菌中含有类cyclinB1蛋白,该蛋白的含量和细胞内位置在细胞周期进程中存在着动态变化。类cyclinB1蛋白在S期开始合成并在细胞质中积累,G2晚期开始进入细胞核,该蛋白在细胞质和细胞核中含量逐渐增加。有丝分裂中期时达最大值。后末期时骤然消失,在G2晚期到有丝分裂中期期间,类cyclinB1蛋白既是细胞核蛋白又是细胞质蛋白,细胞质是类cyclinB1蛋白的主要存在区域,细胞核中的类cyclinB1蛋白主要结合于染色体和核仁区域。  相似文献   

3.
4.
In Snell dwarf mice, the influence of short-term treatment with human growth hormone (hGH) or thyroxine on the proliferative and sulphation activity of the proximal tibial growth plate was studied. By autoradiographic methods, the [3H]methylthymidine incorporation after a single injection was measured, after 2 hr incorporation time. The labelling index was calculated and the number of labelled mitoses was counted. In addition, the distribution of the labelled nuclei over the proliferating and degenerating zones was determined by continuous labelling for 25 and 73 hr. In untreated dwarf mice after [3H]-methylthymidine administration, the number of labelled nuclei in the growth plate is low. Labelling occurs, as expected, mainly in the cells of the proliferative zones. The number of labelled nuclei in control dwarf mice was similar after 25 and 73 hr continuous labelling. This suggests that many cells are in a resting G0 or prolonged G1 phase. Both hGH and T4 treatment induce a significant increase of the number of labelled nuclei per growth plate and of the number of mitoses. Since hormonal treatment induces a small number of mitoses after 2 hr incorporation of the label, the minimal G2 phase of the cell cycle is less than 2 hr. In addition, treatment with hGH and T4 stimulates chondrocytes in the zone of proliferative and hypertrophic cells to actively incorporate [35S]-sulphate.  相似文献   

5.
以自然同步化的多头绒泡菌(Physarum polycephalum L.)为材料,经抗cyclin B1抗体的免疫印迹和免疫电镜实验观察结果表明,多头绒泡菌中含有类cyclin B1蛋白,该蛋白的含量和细胞内位置在细胞周期进程中存在着动态变化:类cyclin B1蛋白在S期开始合成并在细胞质中积累,G2晚期开始进入细胞核,该蛋白在细胞质和细胞核中含量逐渐增加,有丝分裂中期时达最大值,后末期时骤然消失.在G2晚期到有丝分裂中期期间,类cyclin B1蛋白既是细胞核蛋白又是细胞质蛋白,细胞质是类cyclin B1蛋白的主要存在区域,细胞核中的类cyclin B1蛋白主要结合于染色体和核仁区域.  相似文献   

6.
Experiments by flow cytometry (FCM) after nuclei isolation have never been done to investigate cyclins. We have conducted different experiments by FCM using whole cells and isolated nuclei to study the immunolocalization and kinetic patterns of cyclin B1 and cyclin E in various leukemic cell lines. During asynchronous growth, all whole cells had a scheduled, cell cycle phase-restricted expression of cyclin B1. By using a washless immunostaining of unfixed nuclei, cyclin B1 was detected in all cell cycle phases, including G1, although to a lesser extent than in G2/M, suggesting that in whole cells the cyclin B1 epitope is masked and accessible only in isolated nuclei. When the cells were synchronized at the G1/S boundary by thymidine or in the G1 phase by sodium n-butyrate, an identical accumulation of cyclin B1 was observed. As for cyclin E, its expression was higher with thymidine treatment than with sodium n-butyrate, particularly in nuclei. The elevated cyclin B1 level in the cells arrested at the G1/S boundary may reflect the increased half-life of this protein stabilized as the result of cyclin E overexpression. However, our FCM data also support the notion that accumulation of human cyclin B1 in leukemic cell lines begins during the G1 phase of the cell cycle, probably in the nucleus. The detection of cyclin B1 by Western blot in cells sorted in the G1 phase of the cell cycle confirms this finding. It is possible, therefore, that tumor transformation or leukemic phenotype may invariably be associated with altered cyclin B1 expression.  相似文献   

7.
Dinoflagellates are a major group of organisms with an extranuclear spindle. As the purpose of the spindle checkpoint is to ensure proper alignment of the chromosomes on the spindle, dinoflagellate cell cycle control may be compromised to accomodate the extranuclear spindle. In the present study, we demonstrated that nocodazole reversibly prolonged the G2 + M phase of the dinoflagellate cell cycle, in both metaphase and anaphase. The regulation of the spindle checkpoint involves the activation and inhibition of the anaphase promoting complex (APC), which in turn degrades specific cell cycle regulators in the metaphase to anaphase transition. In Crypthecodinium cohnii, nocodazole was also able to induce a prolongation of the degradation of mitotic cyclins and a delay in the inactivation of p13(suc1)-associated histone kinase activities. In addition, cell extracts prepared from C. cohnii in G1 phase and G2/M phase (or nocodazole treated) were able to activate and inhibit, respectively, the degradation of exogenous human cyclin B1 in vitro. The present study thus demonstrated the presence of the spindle checkpoint and APC-mediated cyclin degradation in dinoflagellates. This is discussed in relation to a possible role of the nuclear membrane in mitosis in dinoflagellates.  相似文献   

8.
The diel cycle is a key regulator of the cell cycle in many dinoflagellates, and may play a rate limiting role in bloom formation. Diel phasing of the cell cycle in the Florida red tide dinoflagellate, Gymnodinium breve Davis was previously described in our laboratory. In cultures grown on a 16:8 light:dark cycle, S-phase began 6–8 h into the light phase, and mitosis followed 12–14 h later. The dark/light "dawn" transition was found to provide the diel cue that serves to entrain the G. breve cell cycle. However the cell cycle mechanisms and regulators acted upon by this cue are poorly understood in dinoflagellates. The cell cycle regulatory complex, CDK1-cyclinB, is therefore currently being investigated. Cyclin dependent kinase (CDK) was first identified in G. breve using two approaches: (1) identification of a 34 kDa protein immunoreactive to an antibody raised against a conserved amino acid sequence unique to the CDK protein family (PSTAIR) and (2) inhibition of the cell cycle by olomoucine, a selective CDK inhibitor. Several approaches are currently being employed in order to describe its partner, cyclin B: (1) PCR on genomic DNA with primers deduced from known cyclin box sequences, (2) G. breve expression library screening with an antibody raised against the fission yeast cyclin B (3) western blot analysis on whole protein extracts and cyclin B immunoprecipitated proteins. Current work focuses on the differential expression of the cyclin B homologue in G. breve during its cell cycle and its relation to diel cycle control.  相似文献   

9.
When the mouse mammary adenocarcinoma 755 (Ca-755) reaches the plateau phase of growth, non-cycling cells with a G2-DNA content can be observed. They may belong to the diploid cell cycle but they could also be blocked in G0 or G1 of a tetraploid cycle. This hypothesis was tested in three ways: (1) non-cycling G2 nuclei were stained with a combination of Feulgen and naphthol yellow which revealed two populations, one with a low protein content and the other with a high protein content--the latter may represent nuclei ready to begin a new phase of DNA synthesis; (2) Feulgen staining and autoradiography were performed after tritiated thymidine had been administered to mice continuously: this showed that there were cells synthesizing DNA with a DNA index above 2; and (3) cells having 80 chromosomes, corresponding to the tetraploid cycle, were found almost exclusively in the plateau phase tumours. On the other hand, the use of texture and DNA parameters of the Feulgen stained nuclei showed that they were concentrated in a diploid cycle for tumours in the exponential phase of growth and were divided between a diploid and tetraploid cycle for 'plateau' cells. Neither the cause for, nor the role played by, polyploid cells is known.  相似文献   

10.
11.
Treatment with picolinic acid blocked Neurospora crassa nuclei in G1, and recovery from the treatment allowed a synchronous wave of deoxyribonucleic acid synthesis to occur. Nuclei, which appeared as compact globular bodies during the period of blockage, assumed a ring shape during the following S phase, which was also maintained in the G2 phase. The proportion of compact globular nuclei was much higher in hyphae growing at lower rates, whereas that of ring nuclei increased when the hyphae were growing at higher rates. Horseshoe nuclei (probably mitotic nuclei) and double ring nuclei were also observed in growing hyphae, but their frequencies were low and fairly independent of the rate of growth. The length of the S phase of the Neurospora nuclear division cycle was determined to be about 30 min. From the frequencies of the phase-specific nuclear shapes, the durations of the G1 phase and the combined S plus G2 phases were calculated. The results showed that variations in the growth rates of the mycelia were mainly coupled with variations in the G1 phase of the nuclear division cycle. For mycelia growing in minimal sucrose, the lengths of all of the phases of the nuclear division cycle were estimated.  相似文献   

12.
We have studied the possible correlation between nuclear glutathione distribution and the progression of the cell cycle. The former was studied by confocal microscopy using 5-chloromethyl fluorescein diacetate and the latter by flow cytometry and protein expression of Id2 and p107. In proliferating cells, when 41% of them were in the S+G(2)/M phase of the cell cycle GSH was located mainly in the nucleus. When cells reached confluence (G(0)/G(1)) GSH was localized in the cytoplasm with a perinuclear distribution. The nucleus/cytoplasm fluorescence ratio for GSH reached a maximal mean value of 4.2 +/- 0.8 at 6 h after cell plating. A ratio higher than 2 was maintained during exponential cell growth. In the G(0)/G(1) phase of the cell cycle, the nucleus/cytoplasm GSH ratio decreased to values close to 1. We report here that cells concentrate GSH in the nucleus in the early phases of cell growth, when most of the cells are in an active division phase, and that GSH redistributes uniformly between the nucleus and the cytoplasm when cells reach confluence.  相似文献   

13.
A rapidly growing and fine-textured cell line, NB2P, was established from Japonica rice cultivar Nipponbare and characterized in this study. Addition of casein enzymatic hydrolysate (2 g/L) and pectinase (0.005%) to the suspension medium resulted in a 2-fold-increased rate of cell growth and reduced aggregation. Remarkably, the medium and conditions described here resulted in growth leading to a 9-fold increase in fresh weight 7 d after subculture. High-quality, well-dispersed nuclei were obtained from this NB2P cell culture. Fluorescence-activated cell sorting (FACS) analysis of the isolated nuclei showed a clear separation of each cell cycle phase in both small- and large-scale preparations. On the basis of representative data from the nuclei fraction in the G1 phase, purity of the sorted and recovered nuclei was higher than 98%. The studies described here demonstrate that NB2P culture can be a powerful tool for studying many important plant processes, including DNA replication and cell cycle-related pathways.  相似文献   

14.
15.
Fate of newly synthesized histones in G1 and G0 cells   总被引:2,自引:0,他引:2  
R S Wu  L J Perry  W M Bonner 《FEBS letters》1983,162(1):161-166
We have shown that quiescent cells as well as those in the G1 phase of the cell cycle synthesize histones at a reduced but significant rate. Now, we show that the histones synthesized during G0 and G1 are stably incorporated into nuclei soon after synthesis. Micrococcal nuclease digestion of nuclei isolated from cells in G0 and G1 revealed that the specific histone variants synthesized in these different physiological states are found associated with DNA as nucleosomes. Nucleosomes were separated by polyacrylamide gel electrophoresis in a reducing buffer so that histone spot morphology, particularly that of the H3s was improved.  相似文献   

16.
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.  相似文献   

17.
XL-2 cells (Xenopus laevis) were used for kinetic analysis of cell population growth. The dependence of the time of cell duplication on the percentage of cells in the G0 phase of the cell cycle was studied and described by a mathematical expression. Possible causes of the changes in the ratio between the percentage of cells in the cell cycle and that in the G0 phase were analyzed. These are the decrease in the percentage of cells in the G0 phase due to the increase in the number of dividing cells, their position in the cell islets, the number of nuclei, the relative position of cells in the G0 phase. It was shown that the loss of the free edge by cells during their transition to the second layer of the cell islets without any changes in spreading led to a significant increase in the percentage of cells in the G0 phase. The percentage of cells in the G0 phase increased about five times for multinuclear cells. Analysis of the position of cells in the G0 phase showed that these cells were mostly in groups of two, three or four. Studies of a real cell culture in the logarithmic phase of growth (48-120 h of cultivation) showed that the percentage of cells in the G0 phase did not virtually change and all processes were equalized by one another. We propose a new method to determine the cell cycle duration under conditions from the time of cell culture duplication and the data on the percentage of cells in the G0 phase. This method can be used when traditional approaches using BrdU or [3H]]thymidine are difficult to implement or are unacceptable.  相似文献   

18.
The cell cycle of the fission yeast, Schizosaccharomyces pombe, does not easily lend itself to analysis by flow cytometry, mainly because cells in G(1) and G(2) phase contain the same amount of DNA. This occurs because fission yeast cells under standard growth conditions do not complete cytokinesis until after G(1) phase. We have devised a flow cytometric method exploiting the fact that cells in G(1) phase contain two nuclei, whereas cells in G(2) are mononuclear. Measurements of the width as well as the total area of the DNA-associated fluorescence signal allows the discrimination between cells in G(1) and in G(2) phase and the cell-cycle progression of fission yeast can be followed in detail by flow cytometry. Furthermore, we show how this method can be used to monitor the timing of cell entry into anaphase. Fission yeast cells tend to form multimers, which represents another problem of flow cytometry-based cell-cycle analysis. Here we present a method employing light-scatter measurements to enable the exclusion of cell doublets, thereby further improving the analysis of fission yeast cells by flow cytometry.  相似文献   

19.
Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest.  相似文献   

20.
As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. For example, human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favorable for viral replication. Here we show that the protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号