首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Kanno  S Iwai  M Takao    A Yasui 《Nucleic acids research》1999,27(15):3096-3103
UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Apyrimidinic sites are more effectively nicked by UVDE than apurinic sites. UVDE also possesses 3"-repair activities for AP sites nicked by AP lyase and for 3"-phosphoglycolate produced by bleomycin. The Uvde gene introduced into Escherichia coli cells lacking two types of AP endonuclease, Exo III and Endo IV, gave the host cells resistance to methylmethane sulfonate and t-butyl hydroperoxide. We identified two AP endonuclease activities in S.pombe cell extracts. Besides cyclobutane pyrimidine dimers and 6-4 photoproducts, N. crassa UVDE also nicks Dewar photoproducts. Thus, UVDE is able to repair both of the major forms of DNA damage in living organisms: UV-induced DNA lesions and AP sites.  相似文献   

2.
The ability of HeLa DNA polymerases to carry out DNA synthesis from incisions made by various endodeoxyribonucleases which recognize or form baseless sites in DNA was examined. DNA polymerase beta carried out limited strand displacement synthesis from 3'-hydroxyl nucleotide termini made by HeLa apurinic/apyrimidinic (AP) endonuclease II at the 5'-side of apurinic sites. Escherichia coli endonuclease III incises at the 3'-side of apurinic sites to produce nicks with 3'-deoxyribose termini which did not efficiently support DNA synthesis with beta-polymerase. However, these nicks could be activated to support limited DNA synthesis by HeLa AP endonuclease II, an enzyme which removes the baseless sugar phosphate from the 3'-termini, thus creating a one-nucleotide gap. With dGTP as the only nucleoside triphosphate present, the beta-polymerase catalyzed one-nucleotide DNA repair synthesis from those gaps which lacked dGMP. In contrast, HeLa DNA polymerase alpha was unreactive with all of the above incised DNA substrates. Larger patches of DNA synthesis were produced by nick translation from one-nucleotide gaps with HeLa DNA polymerase beta and HeLa DNase V. Moreover, incisions made by E. coli endonuclease III were activated to support DNA synthesis by the DNase V which removed the 3'-deoxyribose termini. HeLa DNase V also stimulated both the rate and extent of DNA synthesis by DNA polymerase beta from AP endonuclease II incisions. In this case the baseless sugar phosphate was removed from the 5'-termini, and nick translational synthesis occurred. Complete DNA excision repair of pyrimidine dimers was achieved with the beta-polymerase, DNase V, and DNA ligase from incisions made in UV-irradiated DNA by T4 UV endonuclease and HeLa AP endonuclease II. Such incisions produce a one-nucleotide gap containing 3'-hydroxyl nucleotide and 5'-thymine: thymidylate cyclobutane dimer termini. DNase V removes pyrimidine dimers primarily as a dinucleotide and then promotes nick translational DNA synthesis.  相似文献   

3.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is multifunctional enzyme. APEI is involved in the DNA base excision repair process (BER). APE1 participates in BER by cleaving the DNA adjacent to the 5' side of an AP site to produce a hydroxyl group at the 3' terminus of an unmodified nucleotide upstream of the nick and a 5' deoxyribose phosphate moiety downstream. In addition to its AP-endonucleolytic function, APE1 possesses 3' phosphodiesterase, 3'-5' exonuclease and 3' phosphatase activities. Independently of being characterized as DNA repair protein, APE1 was identified as redox-factor (Ref-1). Our own and literature data on the role of APE1 additional functions in cell metabolism and on interactions of APE1 with DNA and other proteins that participate in BER are analyzed in this review.  相似文献   

4.
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.  相似文献   

5.
The aromatic amine 9-amino-ellipticine is a synthetic DNA intercalating compound derived from the antitumor agent ellipticine, which cleaves at very low doses DNA containing apurinic sites by beta-elimination through formation of a Schiff base. This compound has been shown to potentiate the cytotoxic effect of alkylating drugs, such as dimethyl sulfate, in E. coli through a mechanism involving apurinic sites. We have studied the ability of 9-amino-ellipticine to inhibit an enzymatic repair system mimicking base-excision repair, in which E. coli exonuclease III only presents an endonuclease for apurinic/apyrimidinic site activity. 10 microM of 9-amino-ellipticine inhibits 70% of apurinic site repair. Other intercalating agents with similar affinities for DNA do not induce any inhibition. In another system designed for the direct assay of the exonuclease III-induced incisions 5' to AP sites 10 microM of 9-amino-ellipticine inhibits 65% of the endonuclease for apurinic/apyrimidinic site activity of E. coli exonuclease III. The 9-amino-ellipticine-induced formation of a 2',3'-unsaturated deoxyribose and cleavage at the 3' side of the apurinic site, and possible creation of an adduct, as suggested by Bertrand and coworkers (1989), on the 3' position of the deoxyribose seem to strongly inhibit the endonuclease for apurinic/apyrimidinic site activity. 9-Amino-ellipticine appears therefore to be the first small ligand which can inhibit, by an irreversible modification of the substrate, the repair of apurinic sites through the base excision-repair pathway at a pharmacological concentration.  相似文献   

6.
A Price  T Lindahl 《Biochemistry》1991,30(35):8631-8637
Activities that catalyze or promote the release of 5'-terminal deoxyribose phosphate residues from DNA abasic sites previously incised by an AP endonuclease have been identified in soluble extracts of several human cell lines and calf thymus. Such excision of base-free sugar phosphate residues from apurinic/apyrimidinic sites is expected to be obligatory prior to repair by gap filling and ligation. The most efficient excision function is due to a DNA deoxyribophosphodiesterase similar to the protein found in Escherichia coli. The human enzyme has been partially purified and freed from detectable exonuclease activity. This DNA deoxyribophosphodiesterase is a Mg(2+)-requiring hydrolytic enzyme with an apparent molecular mass of approximately 47 kDa and is located in the cell nucleus. By comparison, the major nuclear 5'----3' exonuclease, DNase IV, is unable to catalyze the release of 5'-terminal deoxyribose phosphate residues as free sugar phosphates but can liberate them at a slow rate as part of small oligonucleotides. Nonenzymatic removal of 5'-terminal deoxyribose phosphate from DNA by beta-elimination promoted by polyamines and basic proteins is a very slow mechanism of release compared to enzymatic hydrolysis. We conclude that a DNA deoxyribophosphodiesterase acts at an intermediate stage between an AP endonuclease and a DNA polymerase during DNA repair at apurinic/apyrimidinc sites in mammalian cells, but several alternative routes also exist for the excision of deoxyribose phosphate residues.  相似文献   

7.
The Ape1 protein initiates the repair of apurinic/apyrimidinic sites during mammalian base excision repair (BER) of DNA. Ape1 catalyzes hydrolysis of the 5'-phosphodiester bond of abasic DNA to create nicks flanked by 3'-hydroxyl and 5'-deoxyribose 5-phosphate (dRP) termini. DNA polymerase (pol) beta catalyzes both DNA synthesis at the 3'-hydroxyl terminus and excision of the 5'-dRP moiety prior to completion of BER by DNA ligase. During BER, Ape1 recruits pol beta to the incised apurinic/apyrimidinic site and stimulates 5'-dRP excision by pol beta. The activities of these two enzymes are thus coordinated during BER. To examine further the coordination of BER, we investigated the ability of Ape1 to modulate the deoxynucleotidyltransferase and 5'-dRP lyase activities of pol beta. We report here that Ape1 stimulates 5'-dRP excision by a mechanism independent of its apurinic/apyrimidinic endonuclease activity. We also demonstrate a second mechanism, independent of Ape1, in which conditions that support DNA synthesis by pol beta also enhance 5'-dRP excision. Ape1 modulates the gap-filling activity of pol beta by specifically inhibiting synthesis on an incised abasic substrate but not on single-nucleotide gapped DNA. In contrast to the wild-type Ape1 protein, a catalytically impaired mutant form of Ape1 did not affect DNA synthesis by pol beta. However, this mutant protein retained the ability to stimulate 5'-dRP excision by pol beta. Simultaneous monitoring of 5'-dRP excision and DNA synthesis by pol beta demonstrated that the 5'-dRP lyase activity lags behind the polymerase activity despite the coordination of these two steps by Ape1 during BER.  相似文献   

8.
The major abasic endonuclease of human cells, Ape1 protein, is a multifunctional enzyme with critical roles in base excision repair (BER) of DNA. In addition to its primary activity as an apurinic/apyrimidinic endonuclease in BER, Ape1 also possesses 3'-phosphodiesterase, 3'-phosphatase, and 3'-->5'-exonuclease functions specific for the 3' termini of internal nicks and gaps in DNA. The exonuclease activity is enhanced at 3' mismatches, which suggests a possible role in BER for Ape1 as a proofreading activity for the relatively inaccurate DNA polymerase beta. To elucidate this role more precisely, we investigated the ability of Ape1 to degrade DNA substrates that mimic BER intermediates. We found that the Ape1 exonuclease is active at both mismatched and correctly matched 3' termini, with preference for mismatches. In our hands, the exonuclease activity of Ape1 was more active at one-nucleotide gaps than at nicks in DNA, even though the latter should represent the product of repair synthesis by polymerase beta. However, the exonuclease activity was inhibited by the presence of nearby 5'-incised abasic residues, which result from the apurinic/apyrimidinic endonuclease activity of Ape1. The same was true for the recently described exonuclease activity of Escherichia coli endonuclease IV. Exonuclease III, the E. coli homolog of Ape1, did not discriminate among the different substrates. Removal of the 5' abasic residue by polymerase beta alleviated the inhibition of the Ape1 exonuclease activity. These results suggest roles for the Ape1 exonuclease during BER after both DNA repair synthesis and excision of the abasic deoxyribose-5-phosphate by polymerase beta.  相似文献   

9.
We have discovered a new DNA endonuclease in the fission yeast Schizosaccharomyces pombe which recognizes cyclobutane pyrimidine dimers and (6-4) pyrimidine-pyrimidone photoproducts. S. pombe DNA endonuclease (SPDE) catalyzes a single ATP-independent incision immediately 5' to the UV photoproduct and generates termini containing 3' hydroxyl and 5' phosphoryl groups. Based on these properties, we propose that SPDE may function in a DNA repair capacity, representing the initial recognition/cleavage step of a DNA excision repair pathway.  相似文献   

10.
M Liuzzi  M Weinfeld  M C Paterson 《Biochemistry》1987,26(12):3315-3321
The UV endonucleases [endodeoxyribonuclease (pyrimidine dimer), EC 3.1.25.1] from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. We have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV- (4 kJ/m2, 254 nm) treated, [3H]thymine-labeled poly(dA).poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical- (5 kJ/m2, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. Our data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. Our results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.  相似文献   

11.
Simple base damages are repaired through a short-patch base excision pathway where a single damaged nucleotide is removed and replaced. DNA polymerase beta (Pol beta) is responsible for the repair synthesis in this pathway and also removes a 5'-sugar phosphate residue by catalyzing a beta-elimination reaction. How ever, some DNA lesions that render deoxyribose resistant to beta-elimination are removed through a long-patch repair pathway that involves strand displacement synthesis and removal of the generated flap by specific endonuclease. Three human DNA polymerases (Pol beta, Pol delta and Pol epsilon) have been proposed to play a role in this pathway, however the identity of the polymerase involved and the polymerase selection mechanism are not clear. In repair reactions catalyzed by cell extracts we have used a substrate containing a reduced apurinic/apyrimidinic (AP) site resistant to beta-elimination and inhibitors that selectively affect different DNA polymerases. Using this approach we find that in human cell extracts Pol beta is the major DNA polymerase incorporating the first nucleotide during repair of reduced AP sites, thus initiating long-patch base excision repair synthesis.  相似文献   

12.
Interactions of APE1 (human apurinic/apyrimidinic endonuclease 1) and DNA polymerase beta with various DNA structures imitating intermediates of DNA repair and replication were investigated by gel retardation and photoaffinity labeling. Photoaffinity labeling of APE1 and DNA polymerase beta was accomplished by DNA containing photoreactive group at the 3 -end in mouse embryonic fibroblast (MEF) cell extract or for purified proteins. On the whole, modification efficiency was the same for MEF-extract proteins and for purified APE1 and DNA polymerase beta depending on the nature of the 5 -group of a nick/gap in the DNA substrate. Some of DNA duplexes used in this work can be considered as short-patch (DNA with the 5 -phosphate group in the nick/gap) or long-patch (DNA containing 5 -sugar phosphate or 5 -flap) base excision repair (BER) intermediates. Other DNA duplexes (3 -recessed DNA and DNA with the 5 -hydroxyl group in the nick/gap) have no relation to intermediates forming in the course of BER. As shown by both methods, APE1 binds with the highest efficiency to DNA substrate containing 5 -sugar phosphate group in the nick/gap, whereas DNA polymerase beta binds to DNA duplex with a mononucleotide gap flanked by the 5 -p group. When APE1 and DNA polymerase beta are both present, a ternary complex APE1-DNA polymerase beta-DNA is formed with the highest efficiency with DNA product of APE1 endonuclease activity and with DNA containing 5 -flap or mononucleotide-gapped DNA with 5 -p group. It was found that APE1 stimulates DNA synthesis catalyzed by DNA polymerase beta, and a human X-ray repair cross-complementing group 1 protein (XRCC1) stimulates APE1 3 -5 exonuclease activity on 3 -recessed DNA duplex.  相似文献   

13.
Human apurinic/apyrimidinic endonuclease 1 (APE1) is one of the key participants in the DNA base excision repair system. APE1 hydrolyzes DNA adjacent to the 5′-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3′-hydroxyl group and a 5′-deoxyribose phosphate moiety. APE1 exhibits 3′-phosphodiesterase, 3′-5′-exonuclease, and 3-phosphatase activities. APE1 was also identified as a redox factor (Ref-1). In this review, data on the role of APE1 in the DNA repair process and in other metabolic processes occurring in cells are analyzed as well as the interaction of this enzyme with DNA and other proteins participating in the repair system.  相似文献   

14.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a multifunctional enzyme. In addition to its main AP endonuclease activity, the cleavage of DNA 5' to the AP site, it displays other weak enzymatic activities. One of them is 3'-5' exonuclease activity, which is most effectively pronounced for DNA duplexes containing modified or mismatched nucleotides at the 3' end of the primer chain. There is a presumption that APE1 can correct the DNA synthesis catalyzed by DNA polymerase beta during the base excision repair process. We determined the quantitative parameters of the 3'-5' exonuclease reaction in dependence on the reaction conditions to reveal the detailed mechanism of this process. The kinetic parameters of APE1 exonuclease excision of mismatched dCMP and dTMP from the 3' terminus of single-strand DNA and from photoreactive dCMP analogues applied for photoaffinity modification of proteins and DNA in recombinant systems and cell/nuclear extracts were determined. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

15.
Ultraviolet light irradiation of DNA results in the formation of two major types of photoproducts, cyclobutane dimers and 6-4' [pyrimidin-2'-one] -pyrimidine photoproducts. The enzyme T4 DNA polymerase possesses a 3' to 5' exonuclease activity and hydrolyzes both single and double stranded DNA in the absence of deoxynucleotide triphosphate substrates. Here we describe the use of T4 DNA polymerase associated exonuclease for the detection and quantitation of UV light-induced damage on both single and double stranded DNA. Hydrolysis of UV-irradiated single or double stranded DNA by the DNA polymerase associated exonuclease is quantitatively blocked by both cyclobutane dimers and (6-4) photoproducts. The enzyme terminates digestion of UV-irradiated DNA at the 3' pyrimidine of both cyclobutane dimers and (6-4) photoproducts. For a given photoproduct site, the induction of cyclobutane dimers was the same for both single and double stranded DNA. A similar relationship was also found for the induction of (6-4) photoproducts. These results suggest that the T4 DNA polymerase proofreading activity alone cannot remove these UV photoproducts present on DNA templates, but instead must function together with enzymes such as the T4 pyrimidine dimer-specific endonuclease in the repair of DNA photoproducts. The T4 DNA polymerase associated exonuclease should be useful for the analysis of a wide variety of bulky, stable DNA adducts.  相似文献   

16.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.  相似文献   

17.
To examine the interaction of mammalian base excision repair (BER) enzymes with DNA intermediates formed during BER, we used a novel photoaffinity labeling probe and mouse embryonic fibroblast cellular extracts. The probe was formed in situ, using an end-labeled oligonucleotide containing a synthetic abasic site; this site was incised by apurinic/apyrimidinic endonuclease creating a nick with 3'-hydroxyl and 5'-reduced sugar phosphate groups at the margins, and then a dNMP carrying a photoreactive adduct was added to the 3'-hydroxyl group. With near-UV light (312 nm) exposure of the extract/probe mixture, six proteins were strongly labeled. Four of these include poly(ADP-ribose) polymerase-1 (PARP-1) and the BER participants flap endonuclease-1, DNA polymerase beta, and apurinic/apyrimidinic endonuclease. The amount of the probe cross-linked to PARP-1 was greater than that cross-linked to the other proteins. The specificity of PARP-1 labeling was examined using various competitor oligonucleotides and DNA probes with alternate structures. PARP-1 labeling was stronger with a DNA representing a BER intermediate than with a nick in double-stranded DNA. These results indicate that proteins interacting preferentially with a photoreactive BER intermediate can be selected from the crude cellular extract.  相似文献   

18.
An endodeoxyribonuclease from HeLa cells acting on apurinic/apyrimidinic (AP) sites has been purified to apparent homogeneity as judged by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The presence of Triton X-100 was necessary throughout the purification for stabilization and stimulation of activity. The endonuclease has an apparent native molecular weight of 32,000 determined by molecular sieving and an apparent subunit molecular weight of 41,000 as judged by its electrophoretic mobility in SDS-polyacrylamide gels. The activity has an absolute requirement for Mg2+ or Mn2+ and a broad pH optimum between 6.7 and 9.0 with maximal activity near pH 7.5. The enzyme has no detectable exonuclease activity, nor any endonuclease activity on untreated duplex or single-stranded DNA. It is inhibited by adenine, hypoxanthine, adenosine, AMP, ADP-ribose, and NAD+, but it is unaffected by caffeine, the pyrimidine bases, ADP, ATP, or NADH. The use of a variety of damaged DNA substrates provided no indication that the enzyme acts on other than AP sites. The enzyme appears to cleave AP DNA so as to leave deoxyribose-5-phosphate at the 5' terminus and a 3'-OH at the 3' terminus; it also removes deoxyribose-5-phosphate from AP DNA which has deoxyribose at the 3' terminus. Specific antibody has been produced in rabbits which interacts only with a 41,000-dalton protein present in the purified enzyme (presumably the enzyme itself), as well as with partially purified AP endonuclease fractions from human placenta and fibroblasts.  相似文献   

19.
Mitochondrial DNA polymerase gamma (pol gamma) is active in base excision repair of AP (apurinic/apyrimidinic) sites in DNA. Usually AP site repair involves cleavage on the 5' side of the deoxyribose phosphate by AP endonuclease. Previous experiments suggested that DNA pol gamma acts to catalyze the removal of a 5'-deoxyribose phosphate (dRP) group in addition to playing the conventional role of a DNA polymerase. We confirm that DNA pol gamma is an active dRP lyase and show that other members of the family A of DNA polymerases including Escherichia coli DNA pol I also possess this activity. The dRP lyase reaction proceeds by formation of a covalent enzyme-DNA intermediate that is converted to an enzyme-dRP intermediate following elimination of the DNA. Both intermediates can be cross-linked with NaBH(4). For both DNA pol gamma and the Klenow fragment of pol I, the enzyme-dRP intermediate is extremely stable. This limits the overall catalytic rate of the dRP lyase, so that family A DNA polymerases, unlike pol beta, may only be able to act as dRP lyases in repair of AP sites when they occur at low frequency in DNA.  相似文献   

20.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a multifunctional enzyme. In addition to its main AP endonuclease activity, that incises DNA 5′ to the AP-site, it possesses other weak enzymatic activities. One of them is 3′–5′ exonuclease activity, which is most effectively exhibited for DNA duplexes containing modified or mismatched nucleotides at the 3′-end of the primer chain. There is a presumption that APE1 can correct the DNA synthesis catalyzed by DNA polymerase β through the base excision repair process. We determined the quantitative parameters of the 3′–5′ exonuclease reaction in dependence on the reaction conditions to reveal the detailed mechanism of this process. The kinetic parameters of APE1 exonuclease excision of mismatched dCMP and dTMP from the 3′ terminus of single-strand DNA and of photoreactive dCMP analogues applied for photoaffinity modification of proteins and DNA in recombinant systems and cell/nuclear extracts were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号