首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of the murine coronavirus mouse hepatitis virus type 4 (MHV-4) which contained a mutation in the E2 peplomer glycoprotein were obtained by selection for resistance to neutralization by monoclonal antibodies. Characterization of six variants representing two independent epitopes on E2, E2B and E2C, by in vitro neutralization and antibody-binding assays demonstrated that selection for an alteration in epitope E2B also resulted in changes in epitope E2C and vice versa. We observed a mutation frequency of approximately 10(-4.3) to 10(-4.6), which is consistent with the expected occurrence of single point mutations. The variant virus strains were attenuated with respect to neurovirulence when compared with wild-type MHV-4. Mice normally develop encephalomyelitis and die after wild-type MHV-4 infection. Mice receiving 2- to 3-log-higher doses of the variant strains survived and developed demyelinating disease. As the disease progressed, evidence of remyelination and ongoing demyelination was observed up to 65 days after infection. Virus reisolated 15 days after infection retained the variant phenotype. The data indicate that the E2 glycoprotein plays a central role in determining the cellular tropism and virulence of MHV-4 in the mouse.  相似文献   

2.
Murid herpesvirus 4 (commonly called MHV-68) is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV) and provides an excellent model system for investigating gammaherpesvirus-associated pathogenesis. MHV-76 is a naturally occurring deletion mutant of MHV-68 that lacks 9,538 bp of the left end of the unique portion of the genome encoding nonessential pathogenesis-related genes. The KSHV K1 protein has been shown to transform rodent fibroblasts in vitro and common marmoset T lymphocytes in vivo. Using homologous recombination techniques, we successfully generated recombinants of MHV-76 that encode green fluorescent protein (MHV76-GFP) and KSHV K1 (MHV76-K1). The replication of MHV76-GFP and MHV76-K1 in cell culture was identical to that of MHV-76. However, infection of BALB/c mice via the intranasal route revealed that MHV76-K1 replicated to a 10-fold higher titer than MHV76-GFP in the lungs at day 5 postinfection (p.i.). We observed type 2 pneumocyte proliferation in areas of consolidation and interstitial inflammation of mice infected with MHV76-K1 at day 10 p.i. MHV76-K1 established a 2- to 3-fold higher latent viral load than MHV76-GFP in the spleens of infected mice on days 10 and 14 p.i., although this was 10-fold lower than that established by wild-type MHV-76. A salivary gland tumor was present in one of four mice infected with MHV76-K1, as well as an increased inflammatory response in the lungs at day 120 p.i. compared with that of mice infected with MHV-76 and MHV76-GFP.  相似文献   

3.
Neutralizing and nonneutralizing monoclonal antibodies to the peplomer glycoprotein and nucleocapsid protein of a mouse hepatitis virus (MHV), MHV-NuU, protected mice against lethal MHV-2 challenge. Histopathologically, livers of mice receiving protective antibodies showed some focal necrotic lesions with remarkable cellular infiltration instead of fulminant hepatitis caused by MHV-2.  相似文献   

4.
Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.  相似文献   

5.
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.  相似文献   

6.
Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined.  相似文献   

7.
Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used H-2K(b) restricted T-cell epitopes of NP. The NP-specific CD8(+) T cell response was analyzed using a (51)Cr-release assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific CD8(+) T cell response at eight days after infection. We also found that several different methods to check the NP-specific CD8(+) T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited 2 approximately 4 weeks after immunization and maximized at 6 approximately 8 weeks. NP-specific CD8(+) T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.  相似文献   

8.
Bovine viral diarrhea virus (BVDV) is a worldwide pathogen in cattle which has not been controlled by classical vaccination. The region encoding the BVDV major glycoprotein gp53 (E2) known to possess virus-neutralizing activity was cloned into a mammalian expression vector under the human cytomegalovirus (CMV) intermediate early promoter. Intramuscular and intradermal administration of the recombinant plasmid DNA into BALB/c mice induced BVDV gp53-specific antibody responses to both biotypes (cytopathic and noncytopathic) of BVDV genotype 1, and to cytopathic BVDV genotype 2. BVDV-neutralizing antibodies were generated against BVDV genotype 1 strains and they also persisted 6 months after the last injection.  相似文献   

9.
Providing acquired immune protection against infection with bovine viral diarrhea viruses (BVDV) is challenging due to the heterogeneity that exists among BVDV strains and the ability of the virus to infect the fetus and establish persistent infections. Both modified live and killed vaccines have been shown to be efficacious under controlled conditions. Both humoral and cellular immune responses are protective. Following natural infection or vaccination with a modified live vaccine, the majority of the B cell response (as measured by serum antibodies) is directed against the viral proteins E2 and NS2/3, with minor responses against the Erns and E1 proteins. Vaccination with killed vaccines results in serum antibodies directed mainly at the E2 protein. It appears that the major neutralizing epitopes are conformational and are located within the N-terminal half of the E2 protein. While it is thought that the E2 and NS2/3 proteins induce protective T cell responses, these epitopes have not been mapped. Prevention of fetal infections requires T and B cell response levels that approach sterilizing immunity. The heterogeneity that exists among circulating BVDV strains, works against establishing such immunity. Vaccination, while not 100% effective in every individual animal, is effective at the herd level.  相似文献   

10.
Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.  相似文献   

11.
Herpesviruses maintain long-term infectivity without marked antigenic variation. They must therefore evade neutralization by other means. Immune sera block murine gammaherpesvirus-68 (MHV-68) infection of fibroblasts, but fail to block and even enhance its infection of IgG Fc receptor-bearing cells, suggesting that the antibody response to infection is actually poor at ablating virion infectivity completely. Here we analyzed this effect further by quantitating the glycoprotein-specific antibody response of MHV-68 carrier mice. Gp150 was much the commonest glycoprotein target and played a predominant role in driving Fc receptor-dependent infection: when gp150-specific antibodies were boosted, Fc receptor-dependent infection increased; and when gp150-specific antibodies were removed, Fc receptor-dependent infection was largely lost. Neither gp150-specific monoclonal antibodies nor gp150-specific polyclonal sera gave significant virion neutralization. Gp150 therefore acts as an immunogenic decoy, distorting the MHV-68-specific antibody response to promote Fc receptor-dependent infection and so compromise virion neutralization. This immune evasion mechanism may be common to many non-essential herpesvirus glycoproteins.  相似文献   

12.
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.  相似文献   

13.
The duration of mouse hepatitis virus (MHV) infection was examined in mice inoculated intranasally with selected strains of MHV. Following inoculation with virulent MHV-JHM, genetically susceptible BALB/c mice and resistant CD1 mice had detectable virus in the brain at 1 month, but not later intervals up to 12 months. BALB/c mice infected with avirulent MHV-S or MHV-1 had no detectable virus in brains at 1 month or thereafter. Immunosuppression of BALB/c mice with treatment regimens of hydrocortisone acetate or cyclophosphamide at 1 and 2 months after infection with MHV-JHM did not activate detectable virus in liver or increase the prevalence or degree of brain infection. Immunosuppression with these drugs during the acute phase of MHV-JHM infection influenced MHV infection, based on virus quantification in livers, but timing of drug treatment relative to MHV infection was critical. Mice infected with MHV developed IgG serum antibody titers that persisted without decline for up to 1 year after infection. Antibody titers varied with mouse genotype and infecting virus. These studies, using intranasal inoculation, support the conclusions of others, using other routes of inoculation, that MHV infection is not persistent in adult, immunocompetent mice.  相似文献   

14.
In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions of strains that do not express HE, such as MHV-A59, can infect mouse fibroblasts in vitro, showing that the HE glycoprotein is not required for infection of these cells. The present work was done to study whether interaction of the HE glycoprotein with carbohydrate moieties could lead to virus entry and infection in the absence of interaction of the S glycoprotein with its receptor glycoprotein, MHVR. The DVIM strain of MHV expresses large amounts of HE glycoprotein, as shown by hemadsorption, acetylesterase activity, and immunoreactivity with antibodies directed against the HE glycoprotein of bovine coronavirus. A monoclonal anti-MHVR antibody, MAb-CC1, blocks binding of virus S glycoprotein to MHVR and blocks infection of MHV strains that do not express HE. MAb-CC1 also prevented MHV-DVIM infection of mouse DBT cells and primary mouse glial cell cultures. Although MDCK-I cells express O-acetylated sialic acid residues on their plasma membranes, these canine cells were resistant to infection with MHV-A59 and MHV-DVIM. Transfection of MDCK-I cells with MHVR cDNA made them susceptible to infection with MHV-A59 and MHV-DVIM. Thus, the HE glycoprotein of an MHV strain did not lead to infection of cultured murine neural cells or of nonmurine cells that express the carbohydrate ligand of the HE glycoprotein. Therefore, interaction of the spike glycoprotein of MHV with its carcinoembryonic antigen-related receptor glycoprotein is required for infectivity of MHV strains whether or not they express the HE glycoprotein.  相似文献   

15.
Regulation of B cell responses to the trypanosome surface Ag was examined in H-2k compatible "responder" B10.BR and "nonresponder" C3H mice after infection with two variant clones of Trypanosoma brucei rhodesiense. Development of a selective RIA for independent detection of antibody binding to surface (exposed) and subsurface (buried) epitopes of the trypanosome variable surface glycoprotein (VSG) molecule permitted sensitive quantitation and kinetic characterization of immune responses to these epitopes. The infected B10.BR mice responded to both exposed and buried VSG epitopes of clone LouTat 1 trypanosomes, whereas a B cell response by C3H mice to exposed VSG epitopes was not detected by RIA analyses at any time. However, VSG-specific IgM and IgG responses were produced to buried VSG epitopes, demonstrating that LouTat 1 induced immunoregulation was specific only for the B cell responses to exposed VSG epitopes. Subsequently, comparisons of B10.BR and C3H B cell responses to a heterologous variant, LouTat 1.5, were made. The results revealed that both infected mouse strains produced VSG 1.5-specific antibody to exposed and buried epitopes with different kinetics and maximal sera concentrations, showing, therefore, that these responses are not coordinately regulated. In addition, it was clear that the observed immunosuppression to exposed LouTat 1 VSG epitopes in C3H mice could be regulated by the parasite since functional C3H B cell responses were mounted against exposed VSG epitopes of a closely related variant (LouTat 1.5) after infection.  相似文献   

16.
MHV表面S蛋白介导多种重要的生物学功能,包括对易感细胞受体的吸附、侵入阶段病毒与细胞膜的融合、病毒传播过程中细胞与细胞的融合,以及免疫激活、组织嗜性、病毒致病性的变异。S蛋白对受体mCEACAM的识别是MHV感染种属特异性和组织趋向性的最初决定因素,不同MHV毒株S1亚基的长度及核苷酸序列都呈现高度多态性,这些突变导致抗体表位和T细胞表位缺失,为病毒逃避免疫监视提供一条途径。  相似文献   

17.
Murine coronaviruses such as mouse hepatitis virus (MHV) infect mouse cells via cellular receptors that are isoforms of biliary glycoprotein (Bgp) of the carcinoembryonic antigen gene family (G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G.-S. Jiang, N. Beauchemin, and K. V. Holmes, J. Virol. 67:1-8, 1993). The Bgp isoforms are generated through alternative splicing of the mouse Bgp1 gene that has two allelic forms called MHVR (or mmCGM1), expressed in MHV-susceptible mouse strains, and mmCGM2, expressed in SJL/J mice, which are resistant to MHV. We here report the cloning and characterization of a new Bgp-related gene designated Bgp2. The Bgp2 cDNA allowed the prediction of a 271-amino-acid glycoprotein with two immunoglobulin domains, a transmembrane, and a putative cytoplasmic tail. There is considerable divergence in the amino acid sequences of the N-terminal domains of the proteins coded by the Bgp1 gene from that of the Bgp2-encoded protein. RNase protection assays and RNA PCR showed that Bgp2 was expressed in BALB/c kidney, colon, and brain tissue, in SJL/J colon and liver tissue, in BALB/c and CD1 spleen tissue, in C3H macrophages, and in mouse rectal carcinoma CMT-93 cells. When Bgp2-transfected hamster cells were challenged with MHV-A59, MHV-JHM, or MHV-3, the Bgp2-encoded protein served as a functional MHV receptor, although with a lower efficiency than that of the MHVR glycoprotein. The Bgp2-mediated virus infection could not be inhibited by monoclonal antibody CC1 that is specific for the N-terminal domain of MHVR. Although CMT-93 cells express both MHVR and Bgp2, infection with the three strains of MHV was blocked by pretreatment with monoclonal antibody CC1, suggesting that MHVR was the only functional receptor in these cells. Thus, a novel murine Bgp gene has been identified that can be coexpressed in inbred mice with the Bgp1 glycoproteins and that can serve as a receptor for MHV strains when expressed in transfected hamster cells.  相似文献   

18.
Using synthetic peptides, we characterized the B-lymphocyte (antibody) and T-lymphocyte (proliferation) responses to an immunodominant epitope of human immunodeficiency virus type 1 (HIV-1) located near the amino-terminal end of the transmembrane glycoprotein (env amino acids 598 to 609). Both immunoglobulin M (IgM) and IgG antibodies against this epitope appeared early after primary infection with HIV-1. In an animal model, the IgG response to a synthetic peptide derived from this sequence was T-helper-cell dependent, whereas the IgM response was T-cell independent. In addition, antibody generated by immunization with this peptide had HIV-1-neutralizing activity. Greater than 99% (201 of 203) of patients infected with HIV-1 generated antibody to this peptide in vivo; however, only 24% (7 of 29) had T cells that proliferated in response to this peptide in vitro. These observations suggest that different HIV-1 gp41 epitopes elicit B-cell and T-cell immune responses.  相似文献   

19.
Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.  相似文献   

20.
Chikungunya virus (CHIKV) is an alphavirus which causes chronic and incapacitating arthralgia in humans. Although previous studies have shown that antibodies against the virus are produced during and after infection, the fine specificity of the antibody response against CHIKV is not known. Here, using plasma from patients at different times postinfection, we characterized the antibody response against various proteins of the virus. We have shown that the E2 and E3 glycoproteins and the capsid and nsP3 proteins are targets of the anti-CHIKV antibody response. Moreover, we have identified the different regions in these proteins which contain the linear epitopes recognized by the anti-CHIKV antibodies and determined their structural localization. Data also illustrated the effect of a single K252Q amino acid change at the E2 glycoprotein that was able to influence antibody binding and interaction between the antibodies and epitope because of the changes of epitope-antibody binding capacity. This study provides important knowledge that will not only aid in the understanding of the immune response to CHIKV infection but also provide new knowledge in the design of modern vaccine development. Furthermore, these pathogen-specific epitopes could be used for future seroepidemiological studies that will unravel the molecular mechanisms of human immunity and protection from CHIKV disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号