首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
31P NMR of phosphatidylcholine (lecithin) from egg-yolk in sonicated vesicles has been measured in the presence of various ions. Addition of Ln3+ or Ca2+ shifted the 31P resonance of the phosphate groups of the outer surface of the vesicles. These shifts were measured at varied lanthanide or Ca2+ concentration at different ionic strengths obtained by addition of NaCl. The shifts induced by Tb3+ and Ca2+ have been analyzed using the theory of the diffuse double layer. Corrections were introduced for the effect of the ionic strength on the activities of the ions. The binding efficiency is shown to be controlled by the electrostatic potential produced by the bound cations at the membrane surface. This potential is slightly modified due to weak chloride binding. Binding constants have been derived.  相似文献   

2.
I examined the effects of 100 microM extracellular lanthanum and lanthanide ions on the fast transmembrane sodium channel currents of human heart cell segments. The experiments were conducted under control of the transmembrane electrical and chemical gradients. Lanthanum and lanthanide ion exposure decreased the amplitude and increased the inactivation time constant of the sodium current. Only a transient increase occurred for the activation time constant of the sodium current. The dependence of peak sodium current on excitatory and holding potentials (steady-state activation and inactivation curves, respectively) was transiently shifted to less negative potentials during the first 3 min of exposure, as if these cations were momentarily neutralizing the effective negative charges at the extracellular side of the membrane. The curves then returned to their original position and only the inactivation curves continued shifting progressively towards a limit at more negative membrane potentials. Membrane capacitance was always reduced and this may explain these late effects in terms of changes in membrane dielectric properties and free and bound charges, in addition to traditional screening and binding concepts. These effects were related to the electronic structure of these ions.  相似文献   

3.
Surface chemical and nuclear magnetic resonance (NMR) techniques have been used to study the interaction of Ca2+ and lanthanides with lecithins. With both methods positive reactions were detected at metal concentrations greater than 0.1 mM. 1H and 31P high-resolution NMR spectra obtained with single bilayer vesicles of lecithin were invariant up to Ca2+ concentrations of 0.1 M indicating that there is only a loose association between Ca2+ and the phospholipid. The weak interaction between Ca2+ and lecithin is confirmed by both surface chemical and NMR techniques showing that the packing of egg lecithin molecules present in bilayers does not change up to Ca2+ concentrations of about 0.1 M. The packing was also independent of pH between 1--10. Contradictory results have been reported in the literature concerning the question of Ca2+ binding to lecithins. The conflicting results are shown to have arisen from differences in the experimental conditions and differences in the sensitivity of the physical methods used by various authors to study Ca2+ -lecithin interactions. An estimate of the strength of binding and molecular details of the interaction were derived using paramagnetic lanthanides as isomorphous replacements for Ca2+. From the changes in chemical shifts induced in the presence of lanthanides an apparent binding constant KA approximately 30 l/mol was calculated at lanthanide concentrations greater than 10 mM. Using surface chemical methods it was shown that this KA is up to 10 times larger than that for Ca2+ binding. The complete assignment of the 1H NMR spectrum of lecithin, including the resonances from the relatively immobilized glycerol group, was determined to derive molecular details of the cation-lecithin interaction. From spin-lattice relaxation-time measurements and line broadening in the presence of GdCl3 it is concluded that the cations are bound to the phosphate group and that this is the only binding site. The absolute proton shifts induced by paramagnetic lanthanides depended on the nature of the ion, but the shift ratios standardised to the shift of the O3POCH2 (choline) signal were invariant throughout the lanthanide series indicating that the shifts are purely pseudocontact. In contrast the 31P shifts were found to contain significant contact contributions. These findings are consistent with a weak interaction and with the phosphate group being the binding site. The absolute shifts but not the shift ratios depended on the anion present indicating that the cation binding may be accompanied by binding of anions. Contrary to negatively charged phospholipids the interaction of lanthanides with lecithins was enhanced as the ionic strength was increased by adding NaCl. This was explained in terms of steric hindrance due to the extended conformation of the lecithin polar group.  相似文献   

4.
Adsorption of cations to phosphatidylinositol 4,5-bisphosphate   总被引:7,自引:0,他引:7  
We investigated the binding of physiologically and pharmacologically relevant ions to the phosphoinositides by making 31P NMR, electrophoretic mobility, surface potential, and calcium activity measurements. We studied the binding of protons to phosphatidylinositol 4,5-bisphosphate (PIP2) by measuring the effect of pH on the chemical shifts of the 31P NMR signals from the two monoester phosphate groups of PIP2. We studied the binding of potassium, calcium, magnesium, spermine, and gentamicin ions to the phosphoinositides by measuring the effect of these cations on the electrophoretic mobility of multilamellar vesicles formed from mixtures of phosphatidylcholine (PC) and either phosphatidylinositol, phosphatidylinositol 4-phosphate, or PIP2; the adsorption of these cations depends on the surface potential of the membrane and can be described qualitatively by combining the Gouy-Chapman theory with Langmuir adsorption isotherms. Monovalent anionic phospholipids, such as phosphatidylserine and phosphatidylinositol, produce a negative electrostatic potential at the cytoplasmic surface of plasma membranes of erythrocytes, platelets, and other cells. When the electrostatic potential at the surface of a PC/PIP2 bilayer membrane is -30 mV and the aqueous phase contains 0.1 M KCl at pH 7.0, PIP2 binds about one hydrogen and one potassium ion and has a net charge of about -3. Our mobility, surface potential, and electrode measurements suggest that a negligible fraction of the PIP2 molecules in a cell bind calcium ions, but a significant fraction may bind magnesium and spermine ions.  相似文献   

5.
1. Shifts in the 1H and 31P-nmr signals originating from the outer and inner phosphorylcholine head-groups and from the lipid acyl chains are observed when phosphatidylcholine vesicles are treated with increasing extravesicular concentrations of the lanthanides Eu3+, Pr3+, Yb3+, and Dy3+. 2. The addition of KNCS to increase the binding of the lanthanide ions to the outer head-groups is used to demonstrate that the intravesicular group shifts are not caused by bulk susceptibility effects. 3. The magnitude and direction of the observed shifts in the 1H-nmr spectrum are shown to be consistent with (a) pseudocontact interaction of the paramagnetic lanthanide ions with the outer phospholipid head-groups, (b) current views of the conformation of the phosphatidylcholine head-group in the presence of lanthanides, and (c) a conservation of magnetic field within the vesicles due to their spherical nature. 4. Variation of the shifts with temperature are compared for egg phosphatidylcholine and dipalmitoyl phosphatidylcholine. The temperature variation in shifts is also used to study phase transitions in each monolayer and phase separations in mixed lipid systems.  相似文献   

6.
The binding and translocation rates of hydrophobic cation and anion spin labels were measured in unilamellar vesicle systems formed from phosphatidylcholine. As a result of the membrane dipole potential, the binding and translocation rates for oppositely charged hydrophobic ions are dramatically different. These differences were analyzed using a simple electrostatic model and are consistent with the presence of a dipole potential of approximately 280 mV in phosphatidylcholine. Phloretin, a molecule that reduces the magnitude of the dipole potential, increases the translocation rate of hydrophobic cations, while decreasing the rate for anions. In addition, phloretin decreases the free energy of binding of the cation, while increasing the free energy of binding for the anion. The incorporation of 6-ketocholestanol also produces differential changes in the binding and translocation rates of hydrophobic ions, but in an opposite direction to those produced by phloretin. This is consistent with the view that 6-ketocholestanol increases the magnitude of the membrane dipole potential. A quantitative analysis of the binding and translocation rate changes produced by ketocholestanol and phloretin is well accounted for by a point dipole model that includes a dipole layer due to phloretin or 6-ketocholestanol in the membrane-solution interface. This approach allows dipole potentials to be estimated in membrane vesicle systems and permits predictable, quantitative changes in the magnitude of the internal electrostatic field in membranes. Using phloretin and 6-ketocholestanol, the dipole potential can be altered by over 200 mV in phosphatidylcholine vesicles.  相似文献   

7.
Model membranes (liposomes) of egg yolk phosphatidylcholine were exposed to the charged (cationic) form of amphiphilic drugs (procaine, tetracaine, metroprolol, alprenolol and propranolol). Drug analysis by ultraviolet light absorption of the bulk solution after centrifugation separation was used to determine the amount of drug bound to the membranes. Microelectrophoresis was employed to measure the change in the zeta-potential after drug adsorption. Binding constants were derived by simulating the experimental curves with a theoretical model which considers the electrostatic effects (Gouy-Chapman theory). Analogous experiments were carried out for the adsorption of Eu3+. Metal analysis was made by three different methods. Good agreement between the centrifugation and electrophoresis experiments was obtained for reasonable positions of the plane of shear relative to the positional plane of the bound ions. Displacement of Eu3+ from vesicles upon addition of drug cations was followed by 31P-NMR. The competition experiments were numerically simulated. The Eu3+ binding was assumed to obey a mass action type equilibrium, whereas the drug binding was described by a Henry's law partition. The binding constants for the drugs in the competition experiments followed the same order as in the absence of Eu3+. However, the numerical values had to be reduced. The effect of anions was studied.  相似文献   

8.
31P NMR of phosphatidylcholine (lecithin) from egg-yolk in sonicated vesicles has been measured in the presence of various ions. Addition of Ln3+3 or Ca2+ shifted the 31P resonance of the phosphate groups of the outer surface of the vesicles. These shifts were measured at varied lanthanide or Ca2+ concentration at different ionic strengths obtained by addition of NaCl. The shifts induced by Tb3+ and Ca2+ have been analyzed using the theory of the diffuse double layer. Corrections were introduced for the effect of the ionic strength on the activities of the ions. The binding efficiency is shown to be controlled by the electrostatic potential produced by the bound cations at the membrane surface. This potential is slightly modified due to weak chloride binding. Binding constants have been derived.  相似文献   

9.
Inhibitions of 30?nM rabbit muscle 1-phosphofructokinase (PFK-1) by lithium, potassium, and sodium salts showed inhibition or not depending upon the anion present. Generally, potassium salts were more potent inhibitors than sodium salts; the extent of inhibition by lithium salts also varied with the anion. Li2CO3 was a relatively potent inhibitor of PFK-1 but LiCl and lithium acetate were not. Our results suggest that extents of inhibition by monovalent salts were due to both cations and anions, and the latter needs to be considered before inhibition can be credited to the cation. An explanation for monovalent salt inhibitions is proffered involving interactions of both cations and anions at negative and positive sites of PFK-1 that affect enzyme activity. Our studies suggest that lithium cations per se are not inhibitors: the inhibitors are the lithium salts, and we suggest that in vitro studies involving the effects of monovalent salts on enzymes should involve more than one anion.  相似文献   

10.
The relative stability of the lipid bilayer toward ions above the crystalline to liquid-crystalline phase transition temperature has been studied under isotonic conditions for small annealed vesicles of dilauroyl (DLPC), dimyristoyl (DMPC), diplamitoyl (DPPC), and distearoyl (DSPC) phosphatidylcholine by using lanthanide ions as a probe. The bilayer stability increased as the chain length of the lipid fatty acid increased, and a rapid translocation of ions across the bilayer started at about 60, 70, and 80° C for DMPC, DPPC, and DSPC vesicles, respectively. The bilayer of DLPC vesicles is apparently permeable for the tested ions even at room temperature. Two other important phenomena concomitant with the observed translocation of ions were found. Firstly, the ion leakage occurred in an “an-or-none” fashion, i.e. as soon as the vesicles start to become permeable toward ions, the concentration of ions in the intra-and extravesicular media are equalized within a short time. Secondly, the rate of the relative number of inward facing lipid molecules which become exposed to extravesicularly added paramagnetic lanthanide is a function of the inverse phosphatidylcholine concentration. This feature explicitly excludes the possibilities that the observed ion leakage occurs through a diffusion, pore formation, or through the rupture of vesicle walls induced by vesicle-vesicle collisions. We instead propose as the most probable mechanism that a dynamic equilibrium between the various states of the phosphatidylcholine molecules in water, such as monomers, micelles, vesicles, and multilamellar liposomes, is in fact responsible for the observed phenomena.  相似文献   

11.
NMR and density study of Co site binding by polyelectrolytes   总被引:1,自引:0,他引:1  
The changes of density and chemical shifts of the water proton upon addition of CoCl2 to aqueous solutions of tetramethylammonium salts of seven polyelectrolytes (polyphosphate, maleic acid-methylvinylether alternated copolymer, polyacrylic acid, carboxymethylcellulose of substitution degree 0.98, 1.3, 2.1, 2.65) have been measured. Assuming a negligible contribution of pseudo-contact interaction to the water proton chemical shift and a constant hyperfine constant upon displacement of water molecules by other ligands, has permitted the calculation of (i) the number of water molecules released by Co2+ ions upon binding and the approximate fraction of Co2+ ions bound with loss of water, and (ii) the total volume change upon binding and the individual contributions of counterions and polyelectrolyte charged sites to this volume change. Our results are generally in agreement with those obtained using other methods.  相似文献   

12.
From the behavior of the 13C nmr resonances of the carbonyl carbons of phosphatidylcholine vesicles upon the addition of Yb3+, Ho3+, or Gd3+ lanthanide ions it is concluded that of the two peaks the larger downfield one should be assigned to the outside and the smaller upfield one to the inside of the vesicles. The downfield chemical shifts of the α and β carbonyl carbon peaks in vesicles as compared to CCl4 suggest that the carbonyl oxygens are hydrogen bonded to water in the vesicles. The β-carbonyl oxygen appears more exposed to water in vesicles. Addition of cholesterol to the vesicles produces little chemical shift change suggesting substitution of cholesterol for water in hydrogen bonding to a carbonyl oxygen; the α-carbonyl oxygen is suggested as the more likely acceptor.  相似文献   

13.
D Lichtenberg  S Amselem  I Tamir 《Biochemistry》1979,18(19):4169-4172
Proton magnetic resonance spectra of vesicles of various sizes composed of egg phosphatidylcholine (PC) with varying concentrations of cholesterol differed in the apparent line width of the signal of the methylene protons of PC (delta v1/2). They also varied in the extent of lanthanide-induced shifts of the 31P and 1H NMR signals of the corresponding nuclei of the polar head groups located on the outer surface of the vesicles (delta delta). The differences in the lanthanide-induced shifts of the 31P signals are fully accounted for by the ratio between the externally added lanthanide and the number of PC head groups available for interaction with the lanthanide ions. This was not the case ofr the changes in the 1H NMR spectra. Here delta delta decreased with increasing delta v1/2, suggesting that the packing of the PC paraffinic chaings in the bilayer affects the conformation of the polar head groups; tightening of the packing probably results in a more extended conformation of the head groups. This conclusion is also supported by the larger effect lanthanides have on the 1H chemical shift of the choline head groups on the outer surface of small unilamellar vesicles as compared to groups on the inner, tighter packed layer.  相似文献   

14.
The conformational transition and the cation-binding properties of aqueous furcellaran (a gel-forming, low-sulfated polysaccharide of the carrageenan family) in various salts and salt mixtures was studied by optical rotation and by 133Cs-nmr. The results were compared with theoretical predictions based on the Poisson–Boltzmann cell model (PBCM). The conformational transition of furcellaran occurs in a single step, which implies a nonblocklike distribution of sulfate groups along the polymer chain. The chloride salts of sodium, lithium, and tetramethylammonium are equally potent in inducing helix formation of furcellaran, indicating that these ions act by nonspecific electrostatic interactions. In contrast, the potassium and cesium ions specifically promote helix formation and aggregation (gelation) of furcellaran. The divalent calcium and magnesium ions are nonspecific, but more potent than the nonspecific monovalent ions in inducing helices. Anions differ in their capacity to stabilize the furcellaran helix in the sequence Cl? < NO < Br? < SCN? < I?. The iodide and thiocyanate anions impede aggregation and gel formation. 133Cs-nmr chemical shifts indicate specific binding of cesium ions to the furcellaran helix. Thus, with respect to its ion specificity and ion-binding properties, furcellaran, with 0.6 sulfate group per repeating disaccharide, resembles κ-carrageenan (1 sulfate/disaccharide) but differs from ι-carrageenan (2 sulfates/disaccharide). The conformational transition temperatures of furcellaran are, however, generally higher than those of κ-carrageenan under comparable conditions, and in mixtures of the two polysaccharides, separate transitions still occur, indicating that no mixed helices are formed. The observed ion sensitivity and cation-binding properties of furcellaran agree with predictions, by the PBCM, for a K-carrageenan with a reduced charge density.  相似文献   

15.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

16.
The ion-binding characteristics of reconstituted collagen   总被引:3,自引:3,他引:0       下载免费PDF全文
The ion-binding capacity of highly purified reconstituted calf-skin collagen, and the effects of these ions on the precipitation and solubility of the collagen, were studied with a variety of salt solutions at ionic strength 0·16 and pH7·4. Only a small percentage of the total theoretically available anionic and cationic groups was available for ion-binding. In view of this, it appears that most of the ionizable groups of collagen are involved in intramolecular or intermolecular linkages, or both. Nevertheless, marked differences in the binding of the various ions by collagen were observed. Bivalent cations were bound in extremely small but remarkably similar quantities. In contrast, sodium was bound both in much higher and more variable quantities. Of the anions, pyrophosphate and sulphate were bound in the largest quantities, followed by phosphate, fluoride and chloride, in that order. Despite the minimal uptake by collagen of bivalent cations, they prevented the aggregation of tropocollagen into fibrils, and disaggregated fibrillar collagen. In the presence of multivalent anions, tropocollagen aggregated readily and its fibrillar stability was maintained. On the basis of the imbalance in the binding of ion pairs by the sodium pyrophosphate- and sodium phosphate-treated collagens, it was apparent that a reduced number of side-chain carboxyl groups were dissociated in the presence of these salts.  相似文献   

17.
A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and 1HN/15N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (~40 Å) distance and angular restraints between the lanthanide ion and the observed nuclei, while the 1HN/15N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure determination of the p62 PB1-PB1 complex, which forms a front-to-back 20 kDa homo-oligomer. As p62 PB1 does not intrinsically bind metal ions, the lanthanide binding peptide tag was attached to one subunit of the dimer at two anchoring points. Each monomer was treated as a rigid body and was docked based on the backbone PCS and backbone chemical shift perturbation data. Unlike NOE-based structural determination, this method only requires resonance assignments of the backbone 1HN/15N signals and the PCS data obtained from several sets of two-dimensional 15N-heteronuclear single quantum coherence spectra, thus facilitating rapid structure determination of the protein–protein complex.  相似文献   

18.
Anion-induced fluorescence quenching of lipid probes incorporated into the liposomal membrane was used to study the binding of anions to the lipid membrane. Lipid derivatives bearing nonpolar fluorophore located either in the proximity of the polar headgroups (anthrylvinyl-labelled phosphatidylcholine, ApPC; methyl 4-pyrenylbutyrate, MPB) or in the polar region (rhodamine 19 oleyl ester, OR19) of the bilayer were used as probes. The binding of iodide to the bilayers of different compositions was studied. Based on the anion-induced quenching of the fluorescence, the isotherm of adsorption of the quencher (iodide) to the membrane was plotted. For anions, which are non-quenchers or weak quenchers (thiocyanate, perchlorate or trichloroacetate), the binding parameters were obtained from the data of the competitive displacement of iodide by these anions. The association constants of the anion binding to the bilayer (Ka) were determined for the stoichiometry of 1 ion/1 lipid and also for the case of independent anion binding. At the physiological concentration of the salt, which does not bind noticeably to the membrane (150 mM NaCl), anion binding could be satisfactorily described by the Langmuir isotherm. The approach applied here offers new possibilities for the studies of ion-membrane interactions using fluorescent probes.  相似文献   

19.
Characterization of metal ion-binding sites in bacteriorhodopsin   总被引:12,自引:0,他引:12  
We have investigated the effects of the binding of various metal ions to cation-free bacteriorhodopsin ("blue membrane"). The following have been measured: shift of the absorption maximum from 603 to 558 nm (blue to purple transition), binding isotherms, the release of H+ upon binding, and the decay of the deprotonated intermediate of the photocycle, M412. We find that all cations of the lanthanide series, as well as the alkali and alkali earth metals earlier investigated, are able to bring about the absorption shift, whereas Hg2+ and Pt4+ are not. Sigmoidal spectroscopic titration curves and nonsigmoidal binding curves suggest that there are two high affinity sites for cations in bacteriorhodopsin. Binding to the site with the second highest affinity is responsible for the absorption shift. Divalent cation binding to blue membrane causes release of about six protons, whereas higher numbers of protons are released by trivalent cations, suggesting that the shift of absorption maximum involves proton release from carboxyl group(s). The metal ion bound to this site must be surrounded by carboxyl oxygen atoms acting together as a multidentate ligand with a specific geometry because multivalent ions are effective only when capable of octahedral coordination. Lanthanide ions dramatically inhibit M412 decay at pH above 6.3, an effect probably due to binding to lipid phosphoryl groups.  相似文献   

20.
Carbon-13 NMR spectra of sodium d-gluco- and d-galactopyranuronates were measured in the presence of lanthanum, europium, praseodymium, or neodymium ions in deuterium oxide. The lanthanide-induced shifts of all the carbon signals were divided into three components based on complex-formation, contact, and pseudocontact effects. The last effects on C-1 in the α-anomers were exceedingly greater than those in the corresponding β-anomers. Carbon-13 spin-lattice relaxation times and their reduction induced by gadolinium ion were also measured and the binding sites of the ion were estimated, which showed marked differences between the two anomers and suggested the formation of bidentate complexes, involving linkages to both the ring and the carboxyl oxygen only between the α-anomers and the lanthanide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号