首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The disjunct genus Cercis has been used to test models of Northern Hemisphere historical biogeography. Previous phylogenetic estimates employing DNA sequences of the ITS region and (in one study) those of ndhF recovered a well supported clade of North American and western Eurasian species that was nested within a paraphyletic group of Chinese species. Resolution and clade support within the tree were otherwise low and the monophyly of Cercis canadensis was uncertain. Here we conduct a phylogenetic analysis of Cercis with a higher number of regions (ITS, ndhF, rpoB-trnC, trnT-trnD, and trnS-trnG) and samples than in previous studies. Results corroborate the initial divergence between the Chinese species Cercis chingii and the rest of the genus. Support is newly found both for a clade of the two North American species as sister to the western Eurasian species, and for the monophyly of C. canadensis. As in a previous study, divergence between North American and western Eurasian Cercis was estimated as mid-Miocene (ca. 13 million years ago), and the ancestor in which this divergence occurred was inferred to be xerophytic. Contrary to previous studies, however, our data infer strictly east-to-west vicariance. The timing of the transatlantic divergence in Cercis is too recent to be explained by a postulated continuous belt of semi-arid vegetation between North America and Europe in the Paleogene, suggesting instead the presence of a Miocene North Atlantic corridor for semi-arid plants. In the absence of strong evidence from other sources, the possibility that Cercis has been able to quickly adapt from mesophytic antecedents to semi-arid conditions whenever the latter have arisen in the Northern Hemisphere can be considered a plausible alternative, although parsimony optimization renders this scenario two steps longer.  相似文献   

2.
Plant biogeographers have long argued whether plant disjunctions result from vicariance or dispersal. One of the classic patterns of plant disjunction involves New World amphitropical disjuncts, as exemplified by Tiquilia subg. Tiquilia (Boraginaceae). Subgenus Tiquilia forms a heterogeneous group of ~20 species that is amphitropically distributed in the deserts of North and South America, with four taxa endemic to the Galápagos Islands. The current study reconstructs the biogeographic history of subg. Tiquilia in order to explore the origins of New World amphitropical disjunction and of Galápagos endemism. A strongly supported phylogeny of the subgenus is estimated using sequence data from matK, ndhF, rps16, ITS, and waxy. Biogeographic analyses using combined and individual marker data sets reveal a complex history of long-distance dispersal in subg. Tiquilia. Biogeographic reconstructions imply a North American origin of the subgenus and its three major lineages and require at least four long-distance dispersal events to explain its current distribution. The South American taxa of subg. Tiquilia result from three independent and nonsimultaneous colonization events, while the monophyly and continental origins of the Galápagos endemics are unresolved. This study contributes to a growing body of evidence that intercontinental dispersal has been more common than previously realized.  相似文献   

3.
Refugia featured prominently in shaping evolutionary trajectories during repeated cycles of glaciation in the Quaternary, particularly in the Northern Hemisphere. The Southern Hemisphere instead experienced cycles of severe aridification but little is known about the temporal presence and role of refugia for arid-adapted biota. Isolated mountain ranges located in the Australian arid zone likely provided refugia for many species following Mio/Pliocene (<15 Ma) aridification; however, the evolutionary consequences of the recent development of widespread sand deserts is largely unknown. To test alternative hypotheses of ancient vs. recent isolation, we generated a 10 gene data set to assess divergence history among saxicolous geckos in the genus Heteronotia that have distributions confined to major rocky ranges in the arid zone. Phylogenetic analyses show that each rocky range harbours a divergent lineage, and substantial intraspecific diversity is likely due to topographic complexity in these areas. Old divergences (~4 Ma) among lineages pre-date the formation of the geologically young sand deserts (<1 Ma), suggesting that Pliocene climate shifts fractured the distributions of biota long before the spread of the deserts.  相似文献   

4.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

5.
We implemented a temporally dynamic approach to the cladistic biogeographic analysis of 13 areas of North American deserts and several plant and animal taxa. We undertook a parsimony analysis of paralogy‐free subtrees based on 43 phylogenetic hypotheses of arthropod, vertebrate and plant taxa, assigning their nodes to three different time slices based on their estimated minimum ages: Early‐Mid‐Miocene (23?7 Ma), Late Miocene/Pliocene (6.9?2.5 Ma) and Pleistocene (2.4?0.011 Ma). The analyses resulted in three general area cladograms, one for each time slice, showing different area relationships. They allowed us to detect influences of different geological and palaeoclimatological events of the Early‐Mid‐Miocene, Late Miocene/Pliocene and Pleistocene that might have affected the diversification of the desert biota. Several diversification events in the deserts of North America might have been driven by Neogene uplift, marine incursion and the opening of the California Gulf during the Miocene–Pliocene, whereas climatic fluctuations had the highest impact during the Pleistocene.  相似文献   

6.
7.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

8.
Toxicodendron is a genus in the Rhus complex of Anacardiaceae with a disjunct distribution between eastern Asia and North America, extending to southeastern Asia and the neotropics. Nuclear (internal transcribed spacer, external transcribed spacer, and NIA-i3) and chloroplast (ndhF and trnL-F) sequences were used to construct phylogenetic relationships of Toxicodendron. Phylogenetic analysis of these data strongly support Toxieodendron as a monophyletic group distinct from other genera of the Rhus complex, and the phylogeny does not fully corroborate classification at the sectional level. Two temperate disjunct lineages were detected, one from section Toxicodendron and the other between the eastern North American Toxicodendron vernix and the eastern Asian Toxicodendron vernieifluum. Their divergence times were estimated to be 13.46 (7.95-19.42) and 7.53 (2.76-12.86) mya, respectively. The disjunction between section Griffithii (taxa from warm temperate to tropical Asia) and Toxieodendron striatum (from the neotropics) was supported and their divergence time was estimated to be 20.84 (11.1 6-30.52) mya in the early Miocene. Our biogeographic results and the paleontological data support the Bering land bridge as the most likely route to explain the temperate disjunctions, yet the tropical disjunction in Toxicodendron seems to be best explained by the North Atlantic land bridge hypothesis.  相似文献   

9.
Aim To test a vicariant speciation hypothesis derived from geological evidence of large‐scale changes in drainage patterns in the late Miocene that affected the drainages in the south‐eastern Tibetan Plateau. Location The Tibetan Plateau and adjacent areas. Methods The cytochrome b DNA sequences of 30 species of the genus Schizothorax from nine different river systems were analysed. These DNA sequences were analysed using parsimony, maximum likelihood and Bayesian methods. The approximately unbiased and Shimodaira–Hasegawa tests were applied to evaluate the statistical significance of the shortest trees relative to alternative hypotheses. Dates of divergences between lineages were estimated using the nonparametric rate smoothing method, and confidence intervals of dates were obtained by parametric bootstrapping. Results The phylogenetic relationships recovered from molecular data were inconsistent with traditional taxonomy, but apparently reflected geographical associations with rivers. Within the genus Schizothorax, we observed a divergence between the lineages from the Irrawaddy–Lhuit and Tsangpo–Parlung rivers, and tentatively dated this vicariant event back to the late Miocene (7.3–6.8 Ma). We also observed approximately simultaneous geographical splits within drainages of the south‐eastern Tibetan Plateau, the Irrawaddy, the Yangtze and the Mekong–Salween rivers in the late Miocene (7.1–6.2 Ma). Main conclusions Our molecular evidence tentatively highlights the importance of palaeoriver connections and the uplift of the Tibetan Plateau in understanding the evolution of the genus Schizothorax. Molecular estimates of divergence times allowed us to date these vicariant scenarios back to the late Miocene, which agrees with geological suggestions for the separation of these drainages caused by tectonic uplift in south‐eastern Tibet. Our results indicated the substantial role of vicariant‐based speciation in shaping the current distribution pattern of the genus Schizothorax.  相似文献   

10.
? Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. ? Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. ? Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. ? The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows.  相似文献   

11.
Tempo and mode of hummingbird evolution   总被引:3,自引:0,他引:3  
Lack of adequate historical data has hindered understanding of the evolutionary tempo and mode of many ecologically well-characterized avian radiations. DNA hybridization distances among 28 hummingbirds (Trochilidae) were used to establish a timescale for this family's radiation into more than 330 species. Under a variety of analytical assumptions, genetic distances calibrated with a fossil divergence date corrected for incompleteness in the geologic record indicated that all extant hummingbird lineages began to diverge in the Early Miocene, approximately 40 Myr (million years) after the Paleocene date estimated for the divergence of hummingbirds and swifts. The long period prior to the radiation of living forms provides ample time for divergent evolution to produce the large morphological gap that has tended to obscure the sister-relationship of hummingbirds and swifts. The Miocene radiation of extant hummingbird lineages itself began with the divergence of the hermit and nonhermit subfamilies approximately 17 Ma (million years ago), followed by the rapid divergence of two Andean and one principally Central and North American clade at approximately 12 Ma. Younger subsidiary lineages, including ones found mainly in the Andes or in North America, date to the later Miocene-earlier Pliocene, approximately 6 Ma. The DNA hybridization-based chronology thus indicates a protracted, rather than stricdy rapid, radiation. Evidence from a broader spectrum of organisms supports the general pattern that higher taxonomic structure within many extant continental families evolved in the Miocene, suggesting that a common environmental pacemaker initiated radiation in unrelated groups. Compared to those in the Pleistocene, radiations tracing to the Miocene may have depended less on rapid climate cycling than on creation of new habitats by major geologic and climatic upheavals. For extant hummingbirds, a principal cause for their Miocene diversification probably was the ability of the ecologically generalized subfamily of nonhermits to radiate in montane areas created by the Andean and other orogenies. Similar interactions between new habitats and their exploitation by ecological generalists may explain, at least in part, the contemporaneous radiation of Passeriformes, the most diverse avian order.  相似文献   

12.
The genus Castanea (Fagaceae) is widely distributed in the deciduous forests of the Northern Hemisphere. The striking similarity between the floras of eastern Asia and those of eastern North America and the difference in chestnut blight resistance among species has been of interest to botanists for a century. To infer the biogeographical history of the genus, the phylogeny of Castanea was estimated using DNA sequence data from different regions of the chloroplast genome. Sequencing results support the genus Castanea as a monophyletic group with Castanea crenata as basal. The three Chinese species form a strongly supported sister clade to the North American and European clade. A unique westward expansion of extant Castanea species is hypothesized with Castanea originating in eastern Asia, an initial diversification within Asia during the Eocene followed by intercontinental dispersion and divergence between the Chinese and the European/North American species during the middle Eocene and a split between the European and the North American species in the late Eocene. The differentiation within North America and China might have occurred in early or late Miocene. The North America species are supported as a clade with C. pumila var. ozarkensis, the Ozark chinkapin, as the basal lineage, sister to the group comprising C. pumila var. pumila, the Allegheny chinkapin, and Castanea dentata, the American chestnut. Morphological evolution of one nut per bur in the genus may have occurred independently on two continents.  相似文献   

13.
A summary of the present knowledge ofBolboforma is presented in this paper. The genusBolboforma contains a diverse group of marine, mostly single-chambered enigmatic microfossils (phytoplankton, possibly Chrysophyta) which produced calcitic monocrystalline spheroidal tests with or without inner cysts and with various types of ornamentation. The genusBolboforma occurs in the time interval between late Early Eocene to Late Pliocene, at middle and higher latitudes, and thus, has not been recorded in Quaternary to Recent Sediments. The genus is represented globally, but the first and the last occurrence of the genus appear to be spatially diachronous in both hemispheres.Bolboforma started in the southern hemisphere at the Campbell Plateau (SW Pazific) during the Early Eocene approximately 53 Ma ago, and the genus lived there until latest Miocene times (5.3 Ma at the Kerguelen Plateau, Southern Indian Ocean). The first occurrence ofBolboforma in the northern hemisphere is observed in Upper Eocene Sediments (ca. 36.5 Ma) in the Labrador Sea (North Atlantic), and its youngest occurrence is observed in the Hatton-Rockall Basin (North Atlantic) in the Late Pliocene at 2.84 Ma. Well established and common species permit the definition of nineteenBolboforma zones/subzones. Not all of these are observed in both hemispheres. In the southern hemisphere all four Paleogene zones, but only eight Neogene zones are present, in the northern hemisphere only one Paleogene zone, but fourteen Neogene zones have been determined. Bolboforma distribution, which appears to be broadly bipolar in temperate to cool regions at middle to higher latitudes, aso seems to be linked to the evolution of surface watermasses and their boundaries.   相似文献   

14.
A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.  相似文献   

15.
Aim Several recent studies have suggested that a substantial portion of today’s plant diversity in the Neotropics has resulted from the dispersal of taxa into that region rather than by vicariance. In general, three routes have been documented for the dispersal of taxa onto the South American continent: (1) via the North Atlantic Land Bridge, (2) via the Bering Land Bridge, or (3) from Africa directly onto the continent. Here a species‐rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae) is used as a model to investigate these three hypotheses. Location The Neotropics. Methods The phylogenetic relationships within the long‐branch clade of Annonaceae were reconstructed (using maximum parsimony, maximum likelihood and Bayesian inference) in order to gain insight in the phylogenetic position of Guatteria. Furthermore, Bayesian molecular dating and Bayesian dispersal–vicariance (Bayes‐DIVA) analyses were undertaken. Results Most of the relationships within the long‐branch clade of Annonaceae were reconstructed and had high support. However, the relationship between the Duguetia clade, the XylopiaArtabotrys clade and Guatteria remained unclear. The stem node age estimate of Guatteria ranged between 49.2 and 51.3 Ma, whereas the crown node age estimate ranged between 11.4 and 17.8 Ma. For the ancestral area of Guatteria and its sister group, the area North America–Africa was reconstructed in 99% of 10,000 DIVA analyses, while South America–North America was found just 1% of the time. Main conclusions The estimated stem to crown node ages of Guatteria in combination with the Bayes‐DIVA analyses imply a scenario congruent with an African origin followed by dispersal across the North Atlantic Land Bridge in the early to middle Eocene and further dispersal into North and Central America (and ultimately South America) in the Miocene. The phylogenetically and morphologically isolated position of the genus is probably due to extinction of the North American and European stem lineages in the Tertiary.  相似文献   

16.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

17.
Sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA, the chloroplast ndhF gene, and chloroplast trnL-F regions (trnL intron, and trnL [UAA] 3' exon-trnF [GAA] intergenic spacer) were used for phylogenetic analyses of Rhus, a genus disjunctly distributed in Asia, Europe, Hawaii, North America, and Northern Central America. Both ITS and cpDNA data sets support the monophyly of Rhus. The monophyly of subgenus Rhus was suggested by the combined cpDNA and ITS data, and largely supported in the cpDNA data except that Rhus microphylla of subgenus Lobadium was nested within it. The monophyly of subgenus Lobadium was strongly supported in the ITS data, whereas the cpDNA data revealed two main clades within the subgenus, which formed a trichotomy with the clade of subgenus Rhus plus R. microphylla. The ITS and cpDNA trees differ in the positions of Rhus michauxii, R. microphylla, and Rhus rubifolia, and hybridization may have caused this discordance. Fossil evidence indicates that Rhus dates back to the early Eocene. The penalized likelihood method was used to estimate divergence times, with fossils of Rhus subgenus Lobadium, Pistacia and Toxicodendron used for age constraints. Rhus diverged from its closest relative at 49.1+/-2.1 million years ago (Ma), the split of subgenus Lobadium and subgenus Rhus was at 38.1+/-3.0 Ma. Rhus most likely migrated from North America into Asia via the Bering Land Bridge during the Late Eocene (33.8+/-3.1 Ma). Rhus coriaria from southern Europe and western Asia diverged from its relatives in eastern Asia at 24.4+/-3.2 Ma. The Hawaiian Rhus sandwicensis diverged from the Asian Rhus chinensis at 13.5+/-3.0 Ma. Subgenus Lobadium was inferred to be of North American origin. Taxa of subgenus Lobadium then migrated southward to Central America. Furthermore, we herein make the following three nomenclatural combinations: (1) Searsia leptodictya (Diels) T. S. Yi, A. J. Miller and J. Wen, comb. nov., (2) Searsia pyroides (A. Rich.) T. S. Yi, A. J. Miller and J. Wen, comb. nov., and (3) Searsia undulata (Jacq.) T. S. Yi, A. J. Miller and J. Wen, because our analyses support the segregation of Searsia from Rhus.  相似文献   

18.
The completion of the land bridge between North and South America approximately 3.5-3.1 million years ago (Ma) initiated a tremendous biogeographic event called the Great American Biotic Interchange (GABI), described principally from the mammalian fossil record. The history of biotic interchange between continents for taxonomic groups with poor fossil records, however, is not well understood. Molecular and fossil data suggest that a number of plant and animal lineages crossed the Isthmus of Panama well before 3.5 Ma, leading biologists to speculate about trans-oceanic dispersal mechanisms. Here we present a molecular phylogenetic analysis of the frog genus Pristimantis based on 189 individuals of 137 species, including 71 individuals of 31 species from Panama and Colombia. DNA sequence data were obtained from three mitochondrial (COI, 12S, 16S) and two nuclear (RAG-1 and Tyr) genes, for a total of 4074 base pairs. The resulting phylogenetic hypothesis showed statistically significant conflict with most recognized taxonomic groups within Pristimantis, supporting only the rubicundus Species Series, and the Pristimantis myersi and Pristimantis pardalis Species Groups as monophyletic. Inference of ancestral areas based on a likelihood model of geographic range evolution via dispersal, local extinction, and cladogenesis (DEC) suggested that the colonization of Central America by South American Pristimantis involved at least 11 independent events. Relaxed-clock analyses of divergence times suggested that at least eight of these invasions into Central America took place prior to 4 Ma, mainly in the Miocene. These findings contribute to a growing list of molecular-based biogeographic studies presenting apparent temporal conflicts with the traditional GABI model.  相似文献   

19.
The study of three island groups of the palm tribe Trachycarpeae (Arecaceae/Palmae) permits both the analysis of each independent radiation and comparisons across the tribe to address general processes that drive island diversification. Phylogenetic relationships of Trachycarpeae were inferred from three plastid and three low-copy nuclear genes. The incongruent topological position of Brahea in CISP5 was hypothesized to be caused by a gene duplication event and was addressed using uninode coding. The resulting phylogenetic trees were well-resolved and the genera were all highly supported except for Johannesteijsmannia and Serenoa. Divergence time analysis estimated the stem of the tribe to be approximately 86 Ma and the crown to be 38 Ma, indicating that significant extinction may have occurred along this branch. Historical biogeographic analysis suggested that Trachycarpeae are of southern North American, Central American, or Caribbean origin and supports previous hypotheses of a Laurasian origin. The biogeography and disjunctions within the tribe were interpreted with respect to divergence times, the fossil record, and geological factors such as the formation of the Greater Antilles--Aves Ridge, the Bering and the North Atlantic land bridges, tectonic movement in Southeast Asia, climatic shifts between the Eocene and Pliocene, and volcanism in the Pacific basin. In considering the three major island radiations within Trachycarpeae, Miocene dispersal appears to have been the driving force in allopatric speciation and is highlighted here as an emerging pattern across the tree of life.  相似文献   

20.
Dating the subsidence history of the North Atlantic Land Bridge (NALB) is crucial for understanding intercontinental disjunctions of northern temperate trees. Traditionally, the NALB has been assumed to have functioned as a corridor for plant migration only during the early Cenozoic, but recent findings of plant fossils and inferences from molecular studies are challenging this view. Here, we report dispersed pollen of Quercus from Late Miocene sediments in Iceland that shows affinities with extant northern hemispheric white oaks and North American red oaks. Older (15 to 10 Ma) sediments do not contain pollen of Quercus suggesting it arrived after that time. Pollen from the 9-8 Ma Hrútagil locality is indistinguishable from morphotypes common among white and red oaks. In contrast, pollen from the 5.5 Ma Selárgil locality has a tectum that is at present confined to North American white and red oaks, indicating a second episode of migration to Iceland. These findings suggest that transatlantic migration of temperate plant taxa may not have been limited by vast areas of sea or by cold climates during the Miocene. Furthermore, our results offer a plausible explanation for the remarkably low degree of genetic differentiation between modern disjunct European and North American oaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号