首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the function of the Rieske iron-sulfur protein is generally understood, little is known of how the structure of this protein supports its mechanistic role in electron transfer in the cytochrome bc1 complex. To better understand the structural basis of iron-sulfur protein function, we have undertaken a mutational analysis of the gene encoding this protein and initially isolated five temperature-sensitive iron-sulfur protein mutants (Beckmann, J. D., Ljungdahl, P. O., and Trumpower, B. L. (1989) J. Biol. Chem. 264, 3713-3722). Each of the five ts-rip1- mutants exhibited pleiotropic effects. Although the mutant iron-sulfur proteins manifest several in vitro phenotypes in common, each exhibited unique characteristics. All of the ts-rip1- mutations resulted in membranes with decreased ubiquinol-cytochrome c oxidoreductase activities and decreased thermostability compared to membranes containing wild type iron-sulfur protein. All of the mutations conferred slight but significant resistance to the respiratory inhibitor myxothiazol, and one mutant was hypersensitive to inhibition by UHDBT, a structural analog of ubiquinone. In addition, one of the mutations completely blocks post-translational processing of the iron-sulfur protein, leading to accumulation of pre-iron-sulfur protein in mitochondrial membranes at nonpermissive temperatures. Finally, a mutation 12-amino acid residues away from the carboxyl terminus (203S) results in an extremely unstable protein. This region of the protein may be essential in blocking degradation of pre-iron-sulfur protein by cytoplasmic proteases as the protein is imported into the mitochondria, or may be a "degradation signal," which tags the iron-sulfur protein for turnover.  相似文献   

2.
We have used site-directed mutagenesis of the Saccharomyces cerevisiae Rieske iron-sulfur protein gene (RIP 1) to convert cysteines 159, 164, 178, and 180 to serines, and to convert histidines 161 and 181 to arginines. These 4 cysteines and 2 histidines are conserved in all Rieske proteins sequenced to date, and 4 of these 6 residues are thought to ligate the iron-sulfur cluster to the apoprotein. We have also converted histidine 184 to arginine. This histidine is conserved only in respiring organisms. The site-directed mutations of the six fully conserved putative iron-sulfur cluster ligands result in an inactive iron-sulfur protein, lacking iron-sulfur cluster, and failure of the yeast to grow on nonfermentable carbon sources. In contrast, when histidine 184 is replaced by arginine, the iron-sulfur cluster is assembled properly and the yeast grow on nonfermentable carbon sources. The site-directed mutations of the 6 fully conserved residues do not prevent post-translational import of iron-sulfur protein precursor into mitochondria, nor do the mutations prevent processing of iron-sulfur protein precursor to mature size protein by mitochondrial proteases. Optical spectra of mitochondria from the six mutants indicate that cytochrome b is normal, in contrast to the deranged spectrum of cytochrome b which results when the iron-sulfur protein gene is deleted. In addition, mature size iron-sulfur apoprotein is associated with cytochrome bc1 complex purified from a site-directed mutant in which iron-sulfur cluster is not inserted. These results indicate that mature size iron-sulfur apoprotein, lacking iron-sulfur cluster, is inserted into the cytochrome bc1 complex, where it interacts with and preserves the optical properties of cytochrome b. Insertion of the iron-sulfur cluster is not an obligatory prerequisite to processing of the protein to its final size. Either the processing protease cannot distinguish between iron-sulfur protein with or without the iron-sulfur cluster, or insertion of the iron-sulfur cluster occurs after the protein is processed to its mature size, possibly after it is assembled in the cytochrome bc1 complex.  相似文献   

3.
The nuclear gene encoding the Rieske iron-sulfur protein of the cytochrome bc1 complex of the mitochondrial respiratory chain has been isolated and characterized from Saccharomyces cerevisiae. We used a segment of the iron-sulfur protein gene from Neurospora crassa (Harnisch, U., Weiss, H., and Sebald, W. (1985) Eur. J. Biochem. 149, 95-99) to detect the yeast gene by Southern analysis. Five different but overlapping clones were then isolated by probing a yeast genomic library carried on YEp 13 by colony lift hybridization. Several approaches confirmed that the isolated DNA contained the gene for the Rieske iron-sulfur protein. The yeast gene, which contains no introns, can be expressed in Escherichia coli. A 900-base pair HindIII-EcoRI fragment was subcloned into pUC19 and directed the synthesis of immunodetectable protein. The gene was also identified by disruption of its chromosomal copy by homologous integration. A 400 base pair PstI-EcoRI fragment cloned adjacent to a HIS3 marker in pUC18 was used as an integrating vector. HIS+ transformants were obtained which were unable to grow on the nonfermentable carbon source glycerol. Southern analysis of the respiration deficient (gly-) strains confirmed that the chromosomal copy of the gene was disrupted, and immunoblots of extracts of the transformants indicated a lack of iron-sulfur protein. A respiration-deficient integrant was transformed to GLY+ by a 2-kilobase pair HindIII-BglII fragment, including a complete copy of the gene, carried on a multicopy episomal vector. Immunoblots with monoclonal antibodies to the iron-sulfur protein indicated overproduction of the protein in the complemented strain and revealed expression of approximately equal amounts of mature iron-sulfur protein and of a protein approximately 3 kDa larger than the mature protein in the complemented strain. A 1.2-kilobase pair segment of DNA from the clone which complemented the disrupted strains was sequenced and found to contain an open reading frame of 645 nucleotides, capable of encoding a 21,946-dalton protein. The gene is flanked by consensus signal sequences for initiation and termination which are common in yeast and is preceded by a possible upstream activating sequence. Amino acid sequence analysis of the amino-terminal end of the mature iron-sulfur protein agreed exactly with that predicted by the nucleotide sequence starting at Lys-31.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
The temperature-sensitive cell division cycle (cdc) G1 mutants cdc28 and cdc35 show decreased mitochondrial volumes with respect to the wild type strain A364A (WT) at the restrictive temperature. Of the three criteria of mitochondrial biogenesis studied, that is, number of mitochondria per cell, relative area of the cell occupied by mitochondria, or relative area of mitochondria occupied by inner membranes, only the second indicator was significantly lower in cdc mutants than in the WT. The mitochondrial inner membranes development did not compensate for the decrease in the organelles volume. Apparently, the reduced mitochondrial biogenesis was not due to the temperature shift because the relative area of the cell occupied by mitochondria was already significantly lower at 25°C in cdc mutants. The specific fluxes of oxygen consumption confirmed that the respiratory capacity of cdc mutants is largely impaired in respect to the WT. Cdc28 and cdc35 mutants of Saccharomyces cerevisiae had been previously shown to exhibit high respiratory quotients (from 3 to 7) in respect to the WT (RQ 1.0), which correlated with carbon and energy uncoupling probably the result of glucose-induced catabolite repression [Aon MA, Mónaco ME, Cortassa S (1995) Exp Cell Res 217, 42–51; Mónaco ME, Valdecantos PA, Aon MA (1995) Exp Cell Res 217, 52–56].  相似文献   

6.
To investigate the relationship between post-translational processing of the Rieske iron-sulfur protein of Saccharomyces cerevisiae and its assembly into the mitochondrial cytochrome bc1 complex we used iron-sulfur proteins in which the presequences had been changed by site-directed mutagenesis of the cloned iron-sulfur protein gene, so that the recognition sites for the matrix processing peptidase or the mitochondrial intermediate peptidase (MIP) had been destroyed. When yeast strain JPJ1, in which the gene for the iron-sulfur protein is deleted, was transformed with these constructs on a single copy expression vector, mitochondrial membranes and bc1 complexes isolated from these strains accumulated intermediate length iron-sulfur proteins in vivo. The cytochrome bc1 complex activities of these membranes and bc1 complexes indicate that intermediate iron-sulfur protein (i-ISP) has full activity when compared with that of mature sized iron-sulfur protein (m-ISP). Therefore the iron-sulfur cluster must have been inserted before processing of i-ISP to m-ISP by MIP. When iron-sulfur protein is imported into mitochondria in vitro, i-ISP interacts with components of the bc1 complex before it is processed to m-ISP. These results establish that the iron-sulfur cluster is inserted into the apoprotein before MIP cleaves off the second part of the presequence and that this second processing step takes place after i-ISP has been assembled into the bc1 complex.  相似文献   

7.
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to a single complementation group (G12) have been determined to have lesions in the iron-sulfur protein (Rieske protein) of ubiquinol: cytochrome c reductase. Mutants capable of expressing the protein were chosen for further studies. The genes from 13 independent isolates were cloned and their mutations sequenced. Twelve mutations were ascertained to cause single amino acid substitutions in the carboxyl-terminal regions of the protein between residues 127 and 173. This region is proposed to be part of the catalytic domain with the ligands responsible for co-ordinating the two irons of the 2Fe-2S cluster. Based on the catalytic properties of the ubiquinol: cytochrome c reductase complex and the electron paramagnetic resonance (e.p.r.) signals of the iron-sulfur protein, the mutants describe two different phenotypes. A subset of mutants have no detectable iron-sulfur cluster and are completely deficient in ubiquinol: cytochrome c reductase activity. These strains identify mutations in residues considered to be essential for binding of the iron or for maintaining a proper tertiary structure of the catalytic domain. A second group of mutants have reduced levels of enzymatic activity and exhibit e.p.r. spectra characteristic of the Rieske iron-sulfur cluster. The mutations in the latter strains have been ascribed to residues that influence the redox properties of the cluster by distorting the iron-binding pocket. A secondary and tertiary structure model is presented of the carboxyl-terminal 65 residues constituting the catalytic domain of the iron-sulfur protein. It is postulated that the two irons of the cluster are co-ordinated by three cysteine and a single histidine residue located in a loop structure. The catalytic domain also contains two short alpha-helices and three beta-strands that form a partial beta-barrel. Most of the hydrophilic amino acids are present in turns that map to one pole of the domain. When viewed in the context of the model, mutations that abolish the iron-sulfur cluster are mostly in residues defining the boundaries of the alpha-helices and beta-strands. The notable exception is a cysteine residue that has been assigned to the loop with the iron ligands. This cysteine residue is proposed to co-ordinate one iron of the cluster. Mutations that reduce ubiquinol: cytochrome c reductase activity and alter the redox potential of the cluster occur in residues located in the loop that contains the ligands of the cluster.  相似文献   

8.
To investigate physiologic functions and structural correlates for actin capping protein (CP), we analyzed site-directed mutations in CAP1 and CAP2, which encode the alpha and beta subunits of CP in Saccharomyces cerevisiae. Mutations in four different regions caused a loss of CP function in vivo despite the presence of mutant protein in the cells. Mutations in three regions caused a complete loss of all aspects of function, including the actin distribution, viability with sac6, and localization of CP to actin cortical patches. Mutation of the fourth region led to partial loss of only one function-formation of actin cables. Some mutations retained function and exhibited the complete wild-type phenotype, and some mutations led to a complete loss of protein and therefore loss of function. The simplest hypothesis that can explain these results is that a single biochemical property is necessary for all in vivo functions. This biochemical property is most likely binding to actin filaments, because the nonfunctional mutant CPs no longer co-localize with actin filaments in vivo and because direct binding of CP to actin filaments has been well established by studies with purified proteins in vitro. More complex hypotheses, involving the existence of additional biochemical properties important for function, cannot be excluded by this analysis.  相似文献   

9.
Maintenance of intracellular K+ homeostasis is one of the crucial requisites for the survival of yeast cells. In Saccharomyces cerevisiae, the high K+ content corresponds to a steady state between simultaneous influx and efflux across the plasma membrane. One of the transporters formerly believed to extrude K+ from the yeast cells (besides Ena1-4p and Nha1p) was named Kha1p and presumed as a putative plasma membrane K+/H+ antiporter. We prepared kha1 and tok1-kha1 deletion strains in the B31 and MAB 2d background. Both the strains contain the ena1-4 and nha1 deletions; that means they lack the main active sodium and potassium efflux systems. MAB 2d has additional trk1 and trk2 deletions, i.e. is impaired in active K+ uptake as well. We performed a large physiological study with these strains to specify the phenotype of kha1 deletion. In our experiments, no difference in K+ content or efflux was observed in strains lacking the KHA1 gene compared with control strains. Two main phenotype manifestations of the kha1 deletion were growth defect on high external pH and hygromycin sensitivity. The correlation between these phenotypes and the kha1 deletion was confirmed by plasmid complementation. Fluorescence microscopy of green fluorescent protein (GFP)-tagged Kha1p showed that this antiporter is localized preferentially intracellularly (in contrast to the plasma membrane Na+/H+ antiporter Nha1p). Based on these findings, Kha1p is probably not localized in plasma membrane and does not mediate efflux of alkali metal cations from cells, but is important for the regulation of intracellular cation homeostasis and optimal pH control, similarly as the Nhx1p.  相似文献   

10.
We have isolated a cDNA clone for the Rieske iron-sulfur protein of rat cytochrome bc1 complex, by screening a rat liver cDNA expression library using antiserum directed against the corresponding protein of bovine. The amino acid sequence deduced from the nucleotide sequence of the cDNA indicated that the mature polypeptide of the rat protein consists of 196 amino acid residues with a molecular weight of 21,465, and that it is formed as a precursor with an amino-terminal extension. Northern blot analysis indicated that rat liver possibly contains different sizes of mRNAs for the Rieske iron-sulfur protein, and Southern blot analysis demonstrated that rats and mice possess a single gene for this protein.  相似文献   

11.
The K1 killer plasmid of Saccharomyces cerevisiae is a 1.5-megadalton linear double-stranded ribonucleic acid molecule. Using simplified screening and complementation procedures, we have isolated mutants in three chromosomal genes that are temperature sensitive for killer plasmid maintenance or replication. One of these genes, mak28-1, was located on chromosome X. Two of the temperature-sensitive mutants rapidly lost the wild-type killer plasmid of A364A during spore germination and outgrowth at nonpermissive temperatures, but during vegetative growth, they only lowered the plasmid copy number. These two mutants did not lose two other wild-type K1 killer plasmids, indicating a heterogeneity of the killer plasmids in laboratory yeast strains.  相似文献   

12.
13.
The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.  相似文献   

14.
Ycf1p is a member of the ATP-binding cassette transporter family of membrane proteins. Strong sequence similarity has been observed between Ycf1p, the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance protein (MRP). In this work, we have examined the functional significance of several of the conserved amino acid residues and the genetic requirements for Ycf1p subcellular localization. Biochemical fractionation experiments have established that Ycf1p, expressed at single-copy gene levels, co-fractionates with the vacuolar membrane and that this co-fractionation is independent of vps15 , vps34 or end3 gene function. Several cystic fibrosis-associated alleles of the CFTR were introduced into Ycf1p and found to elicit defects analogous to those seen in the CFTR. An amino-terminal extension shared between Ycf1p and MRP, but absent from CFTR, was found to be required for Ycf1p function, but not its subcellular localization. Mutant forms of Ycf1p were also identified that exhibited enhanced biological function relative to the wild-type protein. These studies indicate that Ycf1p will provide a simple, genetically tractable model system for the study of the trafficking and function of ATP-binding cassette transporter proteins, such as the CFTR and MRP.  相似文献   

15.
16.
Sporulation-deficient mutants were isolated from a homothallic strain of Saccharomyces cerevisiae. Sporulation was induced in these mutants by procedures to sporulate the products of protoplast fusion between mutants and wild-type strains. Spores formed in this way were crossed to wild-type strains in order to analyze them genetically. Twenty-three genes essential to sporulation were identified by tetrad analysis and complementation tests. Gene symbols spoT1 to spoT23 were tentatively assigned to them. These mutants fell into four classes by examination of premeiotic DNA synthesis and meiotic nuclear division: (i) Premeiotic DNA synthesis did not occur (spoT1 - spoT11); (ii) premeiotic DNA synthesis occurred but meiosis I did not occur (spoT12 - spoT15); (iii) meiosis II did not occur (spoT16 - spoT18); (iv) meiosis II occurred but mature spores were not formed (spoT19 - spoT23). Genes spoT4, spoT8, spoT20, and spoT23 were mapped on chromosomes IV, II, XVI and XI, respectively. SpoT18-1 was a UAG nonsense mutation.  相似文献   

17.
The Saccharomyces cerevisiae general regulatory factor CP1, a helix-loop-helix protein that binds the centromere DNA element I (CDEI) of yeast centromeres, is required in yeast for optimal centromere function and for methionine prototrophy. Mutant alleles of CEP1, the gene encoding CP1, were generated by linker insertion, 5'- and 3'-deletion, and random mutagenesis and assayed for DNA binding activity and their ability to confer CP1 function when expressed in yeast. A heterologous CDEI-binding protein, TFEB, was also tested for CP1 function. The results suggested that DNA binding is required for both biological functions of CP1 but is not sufficient. A direct and quantitative correlation was observed between the chromosome loss and nutritional (i.e., Met) phenotypes of strains carrying loss of function alleles, but qualitatively the chromosome loss phenotype was more sensitive to decreased CP1 expression. The data are consistent with a model in which CP1 performs the same general chromatin-related function at centromeres and MET gene promoters and is normally present in functional excess.  相似文献   

18.
Venturicidin is a specific inhibitor of aerobic growth of yeast and has no effect on fermentative growth, a result which is consistent with its known mode of action on mitochondrial oxidative phosphorylation. Venturicidin-resistant mutants of Saccharomyces cerevisiae have been isolated and form two general classes: class 1, nuclear mutants which are resistant to a variety of mitochondrial inhibitors and uncouplers, and class 2, mitochondrial mutants of phenotype VENR OLYR and VENR TETR in vivo. VENR OLYR mutants show a high degree of resistance to venturicidin and oligomycin at the whole cell and mitochondrial ATPase level but, in contrast, no resistance at the mitochondrial level is observed with VENR TETR mutants. Venturicidin resistance/sensitivity can be correlated with two binding sites on mitochondrial ATPase, one of which is common to the oligomycin binding site and the other is common to the triethyl tin binding site. Biochemical genetic studies indicate that two mitochondrial genes specify venturicidin resistance/sensitivity and that the mitochondrial gene products are components of the mitochondrial ATPase complex.  相似文献   

19.
20.
T N Davis 《Cell calcium》1992,13(6-7):435-444
Calmodulin is well characterized as an intracellular Ca2+ receptor in nonproliferating tissues such as muscle and brain. Several observations indicate that calmodulin is also required for cellular growth and division. Deletion of the calmodulin gene is a lethal mutation in Saccharomyces cerevisiae, Schizosaccharomyces pombe and Aspergillus nidulans. Expression of calmodulin antisense RNA in mouse C127 cells causes a transient arrest at G1 and metaphase. Although these results indicate calmodulin plays a critical function during proliferation, they do not reveal the function. S. cerevisiae offers an excellent system for identifying calmodulin functions. Because calmodulin mutants can be readily constructed by gene replacement the consequences of mutations in calmodulin can be directly examined in vivo without interference from wild-type calmodulin. The available wealth of information concerning all aspects of the yeast life cycle provides a large framework for interpretation of new results. The recent dissection of cell cycle regulation is just the latest example of the important insights provided by analyzing basic cellular processes in yeast. Whether studies of calmodulin in yeast will reveal a universal function is unknown. One encouraging result is that yeast cells relying on vertebrate calmodulin as their only source of calmodulin survive and grow well, even if the amount of vertebrate calmodulin is equivalent to the normal steady state levels of yeast calmodulin. This review discusses the varied techniques we are using to identify the functions of calmodulin in yeast. As part of the analysis, we are defining the essential elements of calmodulin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号