首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoterpene cyclases catalyze the divalent metal ion-dependent conversion of geranyl pyrophosphate, the ubiquitous C10 intermediate of isoprenoid biosynthesis, to a variety of monoterpene skeletons, and the pyrophosphoryl moiety is a primary determinant for substrate binding by these enzymes. To determine what specific features of this functional group are critical for enzymatic recognition, inorganic pyrophosphate and a series of structurally related analogs were examined as inhibitors of geranyl pyrophosphate:(+)-alpha-pinene cyclase and geranyl pyrophosphate:(+)-bornyl pyrophosphate cyclase from sage (Salvia officinalis). Analysis of trends in the magnitude of inhibition by the analogs relative to inorganic pyrophosphate indicated that the combination of ionization state (formal charge) at the enzymatic pH optimum, ability to chelate divalent metal ions, and intramolecular flexibility is required for effective interaction with both cyclases. Only when all of these criteria are met is inhibition of cyclization comparable to that observed with inorganic pyrophosphate.  相似文献   

2.
The enzymatic cyclization of geranyl pyrophosphate to monoterpenes is thought to proceed through a series of carbocation-pyrophosphate anion paired intermediates. Sulfonium analogs of two putative carbocationic intermediates of the cyclization sequence were shown to be inhibitors of the conversion of the acyclic precursor to the bicyclic monoterpenes (+)-alpha-pinene and (+)-bornyl pyrophosphate by partially purified cyclase preparations from sage (Salvia officinalis). The sulfonium analog of the tertiary allylic, linalyl, intermediate (i.e. methyl-(4-methylpent-3-en-1-yl)vinyl-sulfonium perchlorate) provided respective Ki values of 2.5 microM and 3.0 microM against the cyclization to alpha-pinene and bornyl pyrophosphate at a substrate concentration of 5 microM, whereas the sulfonium analog of the monocyclic, alpha-terpinyl, intermediate (i.e. dimethyl-(4-methylcyclohex-3-en-1-yl) sulfonium iodide) exhibited respective Ki values of 3.4 microM and 3.9 microM against the same two cyclizations. The potency of inhibition in all cases increased with increasing substrate concentration, indicating that the affinity of the enzymes for the sulfonium analogs was increased by the presence of the pyrophosphate ester. Inorganic pyrophosphate at a concentration of 50 microM, which alone had little influence on the cyclizations, increased the effectiveness of inhibition of the sulfonium analogs severalfold, and the apparent Ki for inorganic pyrophosphate was reduced manyfold by the presence of either analog at 5 microM. That the combination of sulfonium analog and pyrophosphate provided synergistic inhibition of the electrophilic cyclizations indicated that the cyclases bind the paired species more tightly than either partner alone. Specificity studies suggested that inhibition by the above sulfonium ion:pyrophosphate pairs was due to both electronic and structural resemblance to intermediates of the reaction.  相似文献   

3.
(4S)-Limonene synthase, a monoterpene cyclase isolated from the secretory cells of the glandular trichomes of Mentha x piperita (peppermint), catalyzes the cyclization of geranyl pyrophosphate to (4S)-limonene, a key intermediate in the biosynthesis of p-menthane monoterpenes in Mentha species. The enzyme synthesizes principally (-)-(4S)-limonene (greater than 94% of the total products), plus several other monoterpene olefins. The general properties of (4S)-limonene synthase resemble those of other monoterpene cyclases. The enzyme shows a pH optimum near 6.7, an isoelectric point of 4.35, and requires a divalent metal ion for catalysis, either Mg2+ or Mn2+, with Mn2+ preferred. The Km value measured for geranyl pyrophosphate was 1.8 microM. The activity of (4S)-limonene synthase was inhibited by sodium phosphate, sodium pyrophosphate, and reagents directed against the amino acids cysteine, methionine, and histidine. In the presence of Mn2+, geranyl pyrophosphate protected against cysteine-directed inhibition, suggesting that at least one cysteine residue is located at or near the active site. Experiments with alternate substrates and substrate analogs confirmed many elements of the proposed reaction mechanism, including the binding of geranyl pyrophosphate in the form of a complex with the divalent metal ion, the preliminary isomerization of geranyl pyrophosphate to linalyl pyrophosphate (a bound intermediate capable of cyclization), and the participation of a series of carbocation:pyrophosphate anion pairs in the reaction sequence.  相似文献   

4.
(4S)-Limonene synthase, isolated from glandular trichome secretory cell preparations of Mentha x piperita (peppermint) leaves, catalyzes the metal ion-dependent cyclization of geranyl pyrophosphate, via 3S-linalyl pyrophosphate, to (-)-(4S)-limonene as the principal product. Treatment of this terpene cyclase with the histidine-directed reagent diethyl pyrocarbonate at a concentration of 0.25 mM resulted in 50% loss of enzyme activity, and this activity could be completely restored by treatment of the preparation with 5 mM hydroxylamine. Inhibition with diethyl pyrocarbonate was distinguished from inhibition with thiol-directed reagents by protection studies with histidine and cysteine carried out at varying pH. Inactivation of the cyclase by dye-sensitized photooxidation in the presence of rose bengal gave further indication of the presence of a readily modified histidine residue. Protection of the enzyme against inhibition with diethyl pyrocarbonate was afforded by the substrate geranyl pyrophosphate in the presence of Mn2+, and by the sulfonium ion analog of the linalyl carbocation intermediate of the reaction in the presence of inorganic pyrophosphate plus Mn2+, suggesting that an essential histidine residue is located at or near the active site. Similar studies on the inhibition of other monoterpene and sesquiterpene cyclases with diethyl pyrocarbonate suggest that a histidine residue (or residues) may play an important role in catalysis by this class of enzymes.  相似文献   

5.
(+)-Pinene cyclase (synthase) from Salvia officinalis leaf catalyzes the cyclization of geranyl pyrophosphate, via (3R)-linalyl pyrophosphate and the (4R)-alpha-terpinyl cation, to (+)-alpha-pinene and to lesser quantities of stereochemically related monoterpene olefins, whereas (-)-pinene cyclase converts the same achiral precursor, via (3S)-linalyl pyrophosphate and the (4S)-alpha-terpinyl cation, to (-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of related olefins. Racemic thia analogs of the linalyl and alpha-terpinyl carbocation intermediates of the reaction sequence were previously shown to be good uncompetitive inhibitors of monoterpene cyclases, and inhibition was synergized by the presence of inorganic pyrophosphate. These results suggested that the normal reaction proceeds through a series of carbocation:pyrophosphate anion paired intermediates. Both the (4R)- and the (4S)-thia and -aza analogs of the alpha-terpinyl cation were prepared and tested as inhibitors with the antipodal pinene cyclases, both in the absence and in the presence of inorganic pyrophosphate. Although the inhibition kinetics were complex, cooperative binding of the analogs and inorganic pyrophosphate was demonstrated, consistent with ion pairing of intermediates in the course of the normal reaction. Based on the antipodal reactions catalyzed by the pinene cyclases, stereochemical differentiation between the (4R)- and the (4S)-analogs was anticipated; however, neither enzyme effectively distinguished between enantiomers of the thia and aza analogs of the alpha-terpinyl carbocation. Enantioselectivity in the enzymatic conversion of (RS)-alpha-terpinyl pyrophosphate to limonene by the pinene cyclases was also examined. Consistent with the results obtained with the thia and aza analogs, the pinene cyclases were unable to discriminate between enantiomers of alpha-terpinyl pyrophosphate in this unusual reaction. Either the alpha-terpinyl antipodes are too similar to allow differentiation by the pinene cyclases, or these enzymes lack an inherent requirement to distinguish the (4R)- and (4S)-forms because they encounter only one enantiomer in the course of the normal reaction from geranyl pyrophosphate.  相似文献   

6.
Enzymes from Salvia officinalis capable of catalyzing the isomerization and subsequent cyclization of geranyl pyrophosphate to the monoterpenes (+)-alpha-pinene and (+)-bornyl pyrophosphate were examined with the noncyclizable substrate analog 6,7-dihydrogeranyl pyrophosphate in an attempt to dissect the cryptic isomerization step from the normally coupled reaction sequence. The analog inhibited the cyclization of geranyl pyrophosphate and was itself catalytically active, affording acyclic terpene olefins and alcohols as products. The enzymatic products generated from 6,7-dihydrogeranyl pyrophosphate qualitatively resembled the solvolysis products of 6,7-dihydrolinalyl pyrophosphate, yet they constituted a far higher proportion of olefins, suggesting that enzymatic product formation occurs in an environment relatively inaccessible to water. Since the normal cyclization of geranyl pyrophosphate is considered to proceed via preliminary isomerization to the bound tertiary intermediate (3R)-linalyl pyrophosphate, the results suggest that the analog undergoes the normal pyrophosphate ionization-migration step, giving rise in this case to (3R)-6,7-dihydrolinalyl pyrophosphate which is reionized, and because the subsequent cyclizations are precluded, the resulting cation is either deprotonated or captured by water. In divalent metal ion requirement, pH optimum, and other characteristics, the enzymatic transformation of the analog resembles the normal monoterpene cyclase reaction.  相似文献   

7.
(+)-Pinene cyclase from sage (Salvia officinalis) catalyzes the isomerization and cyclization of geranyl pyrophosphate to (+)-alpha-pinene and (+)-camphene, and to lesser amounts of (+)-limonene, myrcene, and terpinolene, whereas (-)-pinene cyclase from this tissue catalyzes the conversion of the acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene, and (-)-camphene, and to lesser quantities of (-)-limonene, myrcene, and terpinolene. The bicyclic products of these enzymes (pinene and camphene) are derived via the cyclization of the cisoid, anti-endo-conformers of the bound, tertiary allylic intermediates (3R)-linalyl pyrophosphate [+)-pinene cyclase) and (3S)-linalyl pyrophosphate [-)-pinene cyclase). When challenged with either enantiomer of linalyl pyrophosphate or with neryl pyrophosphate (cis-isomer of geranyl pyrophosphate) as substrate, both pinene cyclases synthesize disproportionately high levels of acyclic olefins (myrcene and ocimene) and monocyclic olefins (limonene and terpinolene), compared with the product mixtures generated from the natural geranyl precursor. Resolution of the limonene derived from linalyl pyrophosphate and neryl pyrophosphate demonstrated that this monocyclic olefin was formed via conformational foldings in addition to the cisoid,anti-endo-pattern. These results indicate that the alternate substrates are ionized by the cyclases prior to their achieving the optimum orientation for bicyclization. In the case of geranyl pyrophosphate, a preassociation mechanism is suggested in which optimum folding of the terpenyl chain precedes the initial ionization step.  相似文献   

8.
Geranyl pyrophosphate:(-)-endo-fenchol cyclase catalyzes the conversion of geranyl pyrophosphate to (-)-endo-fenchol by a process thought to involve the initial isomerization of the substrate to the tertiary allylic isomer, linalyl pyrophosphate, and the subsequent cyclization of this bound intermediate. Studies with 18O-labeled acyclic precursors and H2(18)O, followed by mass spectrometric analysis of the cyclic product, confirmed that water was the sole source of the carbinol oxygen atom of endo-fenchol, thus indicating the participation of the solvent in terminating this presumptive carbocationic reaction. The isomerization component of the normally coupled reaction sequence was demonstrated directly using the substrate analog 2,3-cyclopropylgeranyl pyrosphosphate and by isolating the corresponding homoallylic analog of linalyl pyrophosphate as a major reaction product. The cyclization component of the reaction sequence was effectively dissected using linalyl pyrophosphate as substrate, and both isomerization and cyclization steps were shown to take place at the same active site of the cyclase, an observation consistent with the efficient coupling of these processes. 2-Fluorogeranyl pyrophosphate and 2-fluorolinalyl pyrophosphate were shown to be effective inhibitors of the cyclase, and the electron-withdrawing substituent was shown to greatly suppress the rate of cyclization of these labeled analogs, indicating that both steps of the coupled isomerization-cyclization sequence are initiated by ionization of an allylic pyrophosphate. Additional evidence for the electrophilic nature of the reaction was obtained by demonstrating the ability of the cyclase to solvolyze other substrate analogs which bear an allylic pyrophosphate, and by showing that cyclization was strongly inhibited by sulfonium analogs of presumptive carbocationic intermediates of the reaction sequence, especially in the presence of inorganic pyrophosphate as counterion. In spite of the fact that the fenchol cyclase terminates the cyclization with an external nucleophile (H2O), the primary mechanistic features of this isomerization-cyclization reaction are similar to those catalyzed by other cyclases that terminate the reaction by deprotonation or cation capture by the pyrophosphate moiety of the substrate.  相似文献   

9.
A soluble enzyme preparation from immature sage (Salvia officinalis) leaves has been shown to catalyze the cation-dependent cyclization of geranyl pyrophosphate to the isomeric monoterpene olefins (+/-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of camphene and limonene (Gambliel, H., and Croteau, R. (1982) J. Biol. Chem. 257, 2335-2342). This preparation was fractionated by gel filtration on Sephadex G-150 to afford two regions of enzymic activity termed geranyl pyrophosphate:pinene cyclase I (Mr approximately equal to 96,000), which catalyzed the conversion of geranyl pyrophosphate to the bicyclic olefin (+)-alpha-pinene, and to smaller quantities of the rearranged olefin (+)-camphene and the monocyclic olefin (+)-limonene, and geranyl pyrophosphate:pinene cyclase II (Mr approximately equal to 55,000), which transformed the acyclic precursor to (-)-alpha-pinene and (-)-beta-pinene, as well as to (-)-camphene, (-)-limonene, and the acyclic olefin myrcene. The multiple olefin biosynthetic activities co-purified with pinene cyclase I on four subsequent chromatographic and electrophoretic steps, and the ability to cyclize geranyl pyrophosphate and the related allylic pyrophosphates neryl pyrophosphate and linalyl pyrophosphate was likewise coincident throughout purification. Fractionation of pinene cyclase II by an identical sequence showed that the activities for the synthesis of the stereochemically related (-)-olefins co-purified, as did the ability to utilize the three acyclic precursors. The general properties of cyclase I and cyclase II were determined, and a scheme for the biosynthesis of the pinenes and related monoterpene olefins was proposed.  相似文献   

10.
To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10-2H3,1-3H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed.  相似文献   

11.
A major wound response in grand fir (Abies grandis) sapling stems is the rapid increase in monoterpene production at the site of injury. Monoterpene cyclases (synthases) catalyze the formation of monoterpenes from geranyl pyrophosphate, and total cyclase activity increases markedly on wounding. At least six distinct cyclases, producing different monoterpene products, have been isolated from wounded grand fir saplings and characterized. The predominant wound-inducible cyclase produces both alpha- and beta-pinene. This pinene cyclase was purified, and polyclonal antibodies were generated in rabbits against the sodium dodecyl sulfate-denatured protein. The antibody preparation was found to cross-react by Western blotting with other grand fir monoterpene cyclases that produce different olefinic products, but not with monoterpene cyclases from related conifer species (Pinus contorta and P. ponderosa) or from angiosperms (Mentha piperita and M. spicata). The increase in monoterpene cyclase activity after wounding was closely correlated with the appearance of new cyclase protein as determined by immunoblotting. These results indicate that the wound-dependent increase in monoterpene cyclase activity is a consequence of de novo synthesis of cyclase protein.  相似文献   

12.
Humulene cyclase and caryophyllene cyclase, two enzymes which catalyze the cyclization of farnesyl pyrophosphate to the respective sesquiterpene olefins, have been partially purified from the supernatant fraction of a sage (Salvia officinalis) leaf epidermis extract and separated from each other by a combination of hydrophobic interaction, gel filtration, and ion-exchange chromatography. The molecular weight of both cyclases was estimated by gel filtration to be 57,000 and both cyclases exhibited a pH optimum of 6.5 and preferred Mg2+ (Km approximately 1.5 mM) as the required divalent metal cation. Both enzymes possessed a Km of about 1.7 microM for farnesyl pyrophosphate, were strongly inhibited by p-hydroxymercuribenzoate, and exhibited comparable sensitivities to a variety of other potential inhibitors. The properties of the two sesquiterpene olefin cyclases, which are the first from a higher plant source to be examined in detail, were very similar to each other and to other monoterpene, sesquiterpene, and diterpene cyclases previously described.  相似文献   

13.
Conversion of geranyl pyrophosphate to cyclic monoterpenes is considered to involve the preliminary isomerization of this acyclic precursor to enzyme-bound linalyl pyrophosphate and the cyclization of this tertiary intermediate. 2-Fluorogeranyl pyrophosphate and 2-fluorolinalyl pyrophosphate are effective competitive inhibitors of the cyclization of geranyl pyrophosphate by several different monoterpene cyclases, and the electron withdrawing alpha-fluorine substituent was shown to suppress the rate of cyclic product formation from both tritium-labeled analogs by at least two orders of cyclic These results indicate that both steps of the coupled isomerization-cyclization sequence are initiated by ionization of an allylic pyrophosphate, and they confirm the electrophilic nature of this enzymatic reaction type and its similarity to the prenyltransferase reaction.  相似文献   

14.
The monoterpene cyclase, gamma-terpinene synthase, from Thymus vulgaris (thyme) leaves was purified to apparent homogeneity by isoelectric focusing and dye-ligand, anion-exchange, hydrophobic interaction, and gel permeation chromatography. The enzyme has a native molecular weight of 96,000 as determined by gel permeation chromatography, and exhibited a specific activity of 538 nmol/h.mg protein (turnover number of approximately 0.01/s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the enzyme to be composed of two apparently identical subunits of Mr approximately 55,000. The protein was very hydrophobic, and possessed a pI value of 4.85 as determined by isoelectric focusing. Maximum activity was observed at pH 6.8 in the presence of 20 mM Mg2+; 5 mM Mn2+ could support catalysis, albeit at a much lower rate. The Km value for the substrate, geranyl pyrophosphate, was 2.6 microM. Cyclase activity was inhibited by cysteine- and histidine-directed reagents. Purified gamma-terpinene synthase also possessed the ability to cyclize geranyl pyrophosphate to small amounts of alpha-thujene and to lesser quantities of myrcene, alpha-terpinene, limonene, linalool, terpinen-4-ol, and alpha-terpineol, all of which appear to be coproducts of the reaction sequence leading to gamma-terpinene. In general properties, the gamma-terpinene synthase from thyme leaves resembles other monoterpene cyclases as well as sesquiterpene and diterpene cyclases.  相似文献   

15.
The p-menthane monoterpenes of the Mentha species are biosynthesized from geranyl pyrophosphate via the monocyclic olefin 4S-limonene. A monoterpene cyclase was isolated from both Mentha x piperita (peppermint) and Mentha spicata (spearmint) that catalyzes the cyclization of geranyl pyrophosphate to 4S-limonene. This enzyme, 4S-limonene synthase, was purified to apparent homogeneity by dye ligand, anion exchange, and hydrophobic interaction chromatography. Since the monoterpenes of Mentha are synthesized and secreted in modified epidermal hairs called glandular trichomes, an extract of isolated glandular trichome cells was used as the source of this enzyme. A combination of gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that purified 4S-limonene synthase had a native molecular weight of 56,000 and was monomeric. The principal product of the enzyme was enantiomerically pure (-)-4S-limonene, and a catalytic constant of 0.3/s was determined. The basic properties of 4S-limonene synthase from both M. x piperita and M. spicata are identical and, in general, are similar to those of other monoterpene, sesquiterpene, and diterpene cyclases isolated from microorganisms and higher plants.  相似文献   

16.
Soluble enzymes from sage (Salvia officinalis) and tansy (Tanacetum vulgare), which catalyze the cyclization of geranyl pyrophosphate and the presumptive intermediate linalyl pyrophosphate to the (+) and (-) enantiomers, respectively, of 2-bornyl pyrophosphate, were employed to evaluate mechanistic alternatives for the pyrophosphate migration in monoterpene cyclization reactions. Separate incubation of [1-3H2,alpha-32P]- and [1-3H2,beta- 32P]geranyl and (+/-)-linalyl pyrophosphates with partially purified preparations of each enantiomer-generating cyclase gave [3H, 32P]bornyl pyrophosphates, which were selectively hydrolyzed to the corresponding bornyl phosphates. Measurement of 3H:32P ratios of these monophosphate esters established that two ends of the pyrophosphate moiety retained their identifies in the cyclization of both precursors to both products and also indicated that there was no appreciable exchange with exogenous inorganic pyrophosphate in the reaction. Subsequent incubations of each cyclase with [8,9-14C,1-18O]geranyl pyrophosphate and with (1E)-(+/-)-[1-3H,3-18O]linalyl pyrophosphate gave the appropriate (+)- or (-)-bornyl pyrophosphates, which were hydrolyzed in situ to the corresponding borneols. Analysis of the derived benzoates by mass spectrometry demonstrated each of the product borneols to possess an 18O enrichment essentially identical with that of the respective acyclic precursor. The absence of P alpha-P beta interchange and the complete lack of positional 18O isotope exchange of the pyrophosphate moiety are compatible with tight ion pairing of intermediates in the coupled isomerization-cyclization of geranyl pyrophosphate and establish a remarkably tight restriction on the motion of the transiently generated pyrophosphate anion with respect to its cationic terpenyl reaction partner.  相似文献   

17.
A soluble enzyme preparation from the leaves of sweet marjoram (Majorana hortensis Moench) catalyzes the divalent cation-dependent cyclization of [1-3H]geranyl pyrophosphate to the bicyclic monoterpene alcohols (+)-[6-3H]cis- and (+)-[6-3H]-transsabinene hydrate, providing labeling patterns consistent with current mechanistic considerations. No free intermediates were detectable in the conversion of geranyl pyrophosphate to the sabinene hydrates as determined by isotopic dilution experiments. Label from H2(18)O water was quantitatively incorporated into the products, indicating that the hydroxyl oxygen atoms of both cis- and trans-sabinene hydrate are derived from water and not from the pyrophosphate ester moiety of the substrate. The two enzymatic activities were inseparable by several chromatographic procedures, and differential inactivation studies suggested that the two activities reside with the same enzyme. The sabinene hydrate cyclase (synthase) has an apparent molecular weight of 56,000, shows a pH optimum near 7.0, and requires a divalent metal ion (either Mn2+ or Mg2+) for activity. The enzyme preparation is also capable of cyclizing neryl pyrophosphate, the cis-isomer of geranyl pyrophosphate, and analysis of mixed substrate incubations indicated that the two precursors are mutually competitive. Kinetic analysis and comparison of Vrel/Km values revealed that geranyl pyrophosphate is the more efficient substrate. This is the first report on an enzyme preparation capable of cyclizing geranyl pyrophosphate and neryl pyrophosphate to the isomeric sabinene hydrates.  相似文献   

18.
Previous studies with soluble enzyme preparations from sage (Salvia officinalis) demonstrated that the monoterpene ketone (+)-camphor was synthesized by the cyclization of neryl pyrophosphate to (+)-bornyl pyrophosphate followed by hydrolysis of this unusual intermediate to (+)-borneol and then oxidation of the alcohol to camphor (R. Croteau, and F. Karp, 1977, Arch. Biochem. Biophys.184, 77–86). Preliminary investigation of the (+)-bornyl pyrophosphate synthetase in crude preparations indicated that both neryl pyrophosphate and geranyl pyrophosphate could be cyclized to (+)-bornyl pyrophosphate, but the presence of high levels of phosphatases in the extract prevented an accurate assessment of substrate specificity. The competing phosphatases were removed by combination of gel filtration on Sephadex G-150, chromatography on hydroxylapatite, and chromatography on O-(diethylaminoethyl)-cellulose. In these fractionation steps, activities for the cyclization of neryl pyrophosphate and geranyl pyrophosphate to bornyl pyrophosphate were coincident, and on the removal of competing phosphatases, the synthetase was shown to prefer geranyl pyrophosphate as substrate (VKm for geranyl pyrophosphate was 20-fold that of neryl pyrophosphate). No interconversion of geranyl and neryl pyrophosphates was detected. The partially purified bornyl pyrophosphate synthetase had an apparent molecular weight of 95,000, and required Mg2+ for catalytic activity (Km for Mg2+ ~ 3.5 mm). Mn2+ and other divalent cations were ineffective in promoting the formation of bornyl pyrophosphate. The enzyme exhibited a pH optimum at 6.2 and was strongly inhibited by both p-hydroxymercuribenzoate and diisopropylfluorophosphate. Bornyl pyrophosphate synthetase is the first monoterpene synthetase to be isolated free from competing phosphatases, and the first to show a strong preference for geranyl pyrophosphate as substrate. A mechanism for the cyclization of geranyl pyrophosphate to bornyl pyrophosphate is proposed.  相似文献   

19.
The major wound-inducible monoterpene synthase (cyclase) of grand fir (Abies grandis) stems transforms geranyl pyrophosphate to both (-)-alpha-pinene (40%) and (-)-beta-pinene (60%). The enzyme was purified to apparent homogeneity by anion-exchange and hydrophobic interaction chromatography, coupled to discontinuous native polyacrylamide gel electrophoresis at neutral pH and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (also at neutral pH) followed by renaturation in 1% Tween 20 (polyoxyethylenesorbitan monolaurate). The renatured enzyme produced a mixture of isomeric pinenes from geranyl pyrophosphate identical to that generated by the native form. The protein exhibited a molecular weight of 63,000 by gel permeation chromatography and of 62,000 by denaturing gel electrophoresis, indicating that the monomer is active. The enzyme required Mn2+ (Km = 30 microM) for activity, exhibited a Km value of 6 microM for the substrate geranyl pyrophosphate, showed a pH optimum at 7.8 and temperature optimum at 42 degrees C, and was inhibited by pyrophosphate (I50 = 0.17 mM), orthophosphate (I50 = 51 mM), and alpha-pinene, as well as by the histidine-directed reagent diethylpyrocarbonate (I50 = 0.64 mM) and the cysteine-directed reagent p-hydroxymercuribenzoate (I50 = 1.9 microM). Although similar in many respects to constitutive monoterpene cyclases of herbaceous species, this inducible cyclase, the first enzyme of this type to be purified to homogeneity from a conifer, is distinguished by the relatively high pH optimum, and the strict specificity and high affinity for the divalent metal ion cofactor.  相似文献   

20.
Enzymes from Salvia officinalis, capable of catalyzing the electrophilic isomerization and subsequent cyclization of geranyl pyrophosphate (3,8-dimethylocta-2E,6-dienyl pyrophosphate) to the monoterpenes (+)-alpha-pinene and (+)-bornyl pyrophosphate, were examined with a series of substrate analogs modified in carbon chain length and in the geometric and electronic character of the C2-C3 and C6-C7 olefinic domains. Inhibition studies with these monoterpene cyclases indicated that the pyrophosphate ester function was the principal determinant of substrate recognition and that the C2-C3 olefin was recognized largely on the basis of geometry, whereas the primary basis of interaction with the C6-C7 olefin was electronic. A related group of allylic pyrophosphates was tested for the ability to undergo enzyme-catalyzed ionization to afford olefinic and/or alcoholic products. From the relative reaction rates it was deduced that the alignment of the allylic pi-system with the C1-OP bond was essential for ionization of the substrate and that specific interaction with the distal C6-C7 isopropylidene function served not only to optimize orbital alignment but also to exclude water from the active site, and thus determine the partitioning of cationic intermediates into olefins or alcohols. From the combination of results, the interrelationships of substrate functional groups within the active site could be approximated and the topology of geranyl pyrophosphate binding to the cyclase thereby formulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号