首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies based on the use of serum as a source of C have shown that fibrils of beta-amyloid peptides that accumulate in the brain of patients with Alzheimer's disease have the ability to bind C1q and activate the classical C pathway. The objective of the present work was to test the ability of fibrils of peptide Abeta1-42 to trigger direct activation of the C1 complex and to carry out further investigations on the site(s) of C1q involved in the interaction with Abeta1-42. Using C1 reconstituted from purified C1q, C1r, and C1s, it was shown that Abeta1-42 fibrils trigger direct C1 activation both in the absence of C1 inhibitor and at C1 inhibitor:C1 ratios up to 8:0, i.e., under conditions consistent with the physiological context in serum. The truncated peptide Abeta12-42 and the double mutant (D7N, E11Q) of Abeta1-42 did not yield C1 activation, providing further evidence that the C1 binding site of beta-amyloid fibrils is located in the acidic N-terminal 1-11 region of the Abeta1-42 peptide. Binding studies performed using a solid phase assay provided strong evidence that C1q interacts with Abeta1-42 fibrils through its C-terminal globular regions. In contrast to previous studies based on a different experimental design, no significant involvement of the C1q collagen-like domain was detected. These findings were confirmed by additional experiments based on C1 activation and C4 consumption assays. These observations provide direct evidence of the ability of beta-amyloid fibrils to trigger activation of the classical C pathway and further support the hypothesis that C activation may be a component of the pathogenesis of Alzheimer's disease.  相似文献   

2.
Alzheimer's disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid beta-peptide (Abeta) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Abeta1-40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Abeta complexes were found to be more toxic than those formed without the enzyme, for Abeta1-40 and Abeta1-42, but not for amyloid fibrils formed with AbetaVal18-Ala, a synthetic variant of the Abeta1-40 peptide. Of all the AChE-Abeta complexes tested the one containing the Abeta1-40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Abeta1-40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Abeta1-40 aggregates are more toxic than those of AChE-Abeta1-42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

3.
Antzutkin ON  Leapman RD  Balbach JJ  Tycko R 《Biochemistry》2002,41(51):15436-15450
We describe electron microscopy (EM), scanning transmission electron microscopy (STEM), and solid-state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the 42-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1)(-)(42)) and by residues 10-35 of the full-length peptide (Abeta(10)(-)(35)). These measurements place constraints on the supramolecular structure of the amyloid fibrils, especially the type of beta-sheets present in the characteristic amyloid cross-beta structural motif and the assembly of these beta-sheets into a fibril. EM images of negatively stained Abeta(10)(-)(35) fibrils and measurements of fibril mass per length (MPL) by STEM show a strong dependence of fibril morphology and MPL on pH. Abeta(10)(-)(35) fibrils formed at pH 3.7 are single "protofilaments" with MPL equal to twice the value expected for a single cross-beta layer. Abeta(10)(-)(35) fibrils formed at pH 7.4 are apparently pairs of protofilaments or higher order bundles. EM and STEM data for Abeta(1)(-)(42) fibrils indicate that protofilaments with MPL equal to twice the value expected for a single cross-beta layer are also formed by Abeta(1)(-)(42) and that these protofilaments exist singly and in pairs at pH 7.4. Solid-state NMR measurements of intermolecular distances in Abeta(10)(-)(35) fibrils, using multiple-quantum (13)C NMR, (13)C-(13)C dipolar recoupling, and (15)N-(13)C dipolar recoupling techniques, support the in-register parallel beta-sheet organization previously established by Lynn, Meredith, Botto, and co-workers [Benzinger et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 13407-13412; Benzinger et al. (2000) Biochemistry 39, 3491-3499] and show that this beta-sheet organization is present at pH 3.7 as well as pH 7.4 despite the differences in fibril morphology and MPL. Solid-state NMR measurements of intermolecular distances in Abeta(1)(-)(42) fibrils, which represent the first NMR data on Abeta(1)(-)(42) fibrils, also indicate an in-register parallel beta-sheet organization. These results, along with previously reported data on Abeta(1)(-)(40) fibrils, suggest that the supramolecular structures of Abeta(10)(-)(35), Abeta(1)(-)(40), and Abeta(1)(-)(42) fibrils are quite similar. A schematic structural model of these fibrils, consistent with known experimental EM, STEM, and solid-state NMR data, is presented.  相似文献   

4.
The concentration of beta-amyloid peptide (Abeta), x-42 or x-40 amino acids long, increases in brain with the progression Alzheimer's disease (AD). These peptides are deposited extracellularly as highly insoluble fibrils that form densities of amyloid plaques. Abeta fibrillization is a complex polymerization process preceded by the formation of oligomeric and prefibrillar Abeta intermediates. In some of our in vitro studies, in which the kinetics of intermediate steps of fibril formation were examined, we used concentrations of synthetic Abeta that exceed what is normally employed in fibrillization studies, 300-600 microM. At these concentrations, in a cell free system and under physiological conditions, Abeta 1-40 peptide (Abeta40) forms fibrils that spontaneously assemble into clearly defined spheres, "betaamy balls", with diameters of approximately 20-200 microm. These supramolecular structures show weak birefringence with Congo red staining and high stability with prolonged incubation times (at least 2 weeks) at 30 degrees C, freezing, and dilution in H(2)O. At 600 microM, they are detected after incubation for approximately 20 h. Abeta peptide 1-42 (Abeta42) lacks the ability to form betaamy balls but accelerates Abeta40 betaamy ball formation at low stoichiometric levels (1:20 Abeta42:Abeta40 ratio). Abeta42 levels above this (=10-50% w/w) impede Abeta40 betaamy ball formation. Using light (LM) and electron microscopy (EM), this study examines the gross morphology and ultrastructure of Abeta40 betaamy balls and their time course of formation, in the absence and presence of Abeta42, along with some stability measures. As spheres of a misfolded protein, betaamy balls resemble both AD Abeta senile plaques and neuronal inclusion bodies associated with other neurodegenerative diseases.  相似文献   

5.
Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the reported Abeta(1-42)-induced lipid peroxidation, protein oxidation, and neurotoxicity, all of which are prevented by the chain-breaking antioxidant vitamin E. In the theoretical calculations, it was shown that no other amino acid, only Gly, could undergo such a reaction. To test this prediction we studied the effects of substitution of Gly33 of Abeta(1-42) on protein oxidation and neurotoxicity of hippocampal neurons and free radical formation in synaptosomes and in solution. Gly33 of Abeta(1-42) was substituted by Val (Abeta(1-42G33V)). The substituted peptide showed almost no neuronal toxicity compared to the native Abeta(1-42) as well as significantly lowered levels of oxidized proteins. In addition, synaptosomes subjected to Abeta(1-42G33V) showed considerably lower dichlorofluorescein-dependent fluorescence - a measure of reactive oxygen species (ROS) - in comparison to native Abeta(1-42) treatment. The ability of the peptides to generate ROS was also evaluated by electron paramagnetic resonance (EPR) spin trapping methods using the ultrapure spin trap N-tert-butyl-alpha-phenylnitrone (PBN). While Abeta(1-42) gave a strong mixture of four- and six-line PBN-derived spectra, the intensity of the EPR signal generated by Abeta(1-42G33V) was far less. Finally, the ability of the peptides to form fibrils was evaluated by electron microscopy. Abeta(1-42G33V) does not form fibrils nearly as well as Abeta(1-42) after 48 h of incubation. The results suggest that Gly33 may be a possible site of free radical propagation processes that are initiated on Met35 of Abeta(1-42) and that contribute to the peptide's toxicity in Alzheimer's disease brain.  相似文献   

6.
The 39- to 42-residue-long amyloid beta-peptide (Abeta-peptide) forms filamentous structures in the neuritic plaques found in the neuropil of Alzheimer's disease patients. The assembly and deposition of Abeta-fibrils is one of the most important factors in the pathogenesis of this neurodegenerative disease. Although the structural analysis of amyloid fibrils is difficult, single-molecule methods may provide unique insights into their characteristics. In the present work, we explored the nanomechanical properties of amyloid fibrils formed from the full-length, most neurotoxic Abeta1-42 peptide, by manipulating individual fibrils with an atomic force microscope. We show that Abeta-subunit sheets can be mechanically unzipped from the fibril surface with constant forces in a reversible transition. The fundamental unzipping force (approximately 23 pN) was significantly lower than that observed earlier for fibrils formed from the Abeta1-40 peptide (approximately 33 pN), suggesting that the presence of the two extra residues (Ile and Ala) at the peptide's C-terminus result in a mechanical destabilization of the fibril. Deviations from the constant force transition may arise as a result of geometrical constraints within the fibril caused by its left-handed helical structure. The nanomechanical fingerprint of the Abeta1-42 is further influenced by the structural dynamics of intrafibrillar interactions.  相似文献   

7.
The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (Abeta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, Abeta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for Abeta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different Abeta(1-42) species on Ca(2+) homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca(2+) that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca(2+) increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.  相似文献   

8.
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease.  相似文献   

9.
The Arctic mutation within the amyloid-beta (Abeta) peptide causes Alzheimer disease. In vitro, Arctic-mutant Abeta forms (proto)fibrils more effectively than wild-type Abeta. We generated transgenic mouse lines expressing Arctic-mutant human amyloid precursor proteins (hAPP). Amyloid plaques formed faster and were more extensive in Arctic mice than in hAPP mice expressing wild-type Abeta, even though Arctic mice had lower Abeta(1-42/1-40) ratios. Thus, the Arctic mutation is highly amyloidogenic in vivo.  相似文献   

10.
Kiuchi Y  Isobe Y  Fukushima K  Kimura M 《Life sciences》2002,70(20):2421-2431
Amyloid beta-protein (A3) fibril in senile plaque may be related to the pathogenesis of Alzheimer's disease (AD). Basement membrane (BM) components are associated with the plaques in AD brain. It suggests that the BM components may play an important role in the deposition of the plaque. We investigated the potential of BM components, such as type IV collagen (collagen IV) and entactin, to induce disassembly of preformed Abeta1-42 (Abeta42) fibrils in direct comparison to laminin. Thioflavin T assays revealed that these BM components disrupted preformed Abeta42 fibrils in a dose-dependent manner. The high concentration of BM components, 100 microg/mL laminin, 50 microg/mL collagen IV and 50 microg/mL entactin, had most effect on disassembly of preformed Abeta42 fibrils (Molar ratio; Abeta42:laminin = 90:1, Abeta42:collagen IV = 34:1, Abeta42:entactin = 20:1). Circular dichroism spectroscopy data indicated that the high concentration of BM components induced structural transition in Abeta42 from beta-sheet to random structures. These results suggest that collagen IV and entactin, as well as laminin, are effective inducers of disassembly of Abeta42 fibrils. The ability of these BM components to induce random structures may be linked to the disassembly of preformed Abeta42 fibrils.  相似文献   

11.
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.  相似文献   

12.
Assemblyof the amyloid-beta peptide (Abeta) into fibrils and its deposition in distinct brain areas is considered responsible for the pathogenesis of Alzheimer's disease (AD). Thus, inhibition of fibril assembly is a potential strategy for therapeutic intervention. Electron cryomicroscopy was used to monitor the initial, native assembly structure of Abeta42. In addition to the known fibrillar intermediates, a nonfibrillar, polymeric sheet-like structure was identified. A temporary sequence of supramolecular structures was revealed with (i) polymeric Abeta42 sheets during the onset of assembly, inversely related to the appearance of (ii) fibril intermediates, which again are time-dependently replaced by (iii) mature fibrils. A cell-based primary screening assay was used to identify compounds that decrease Abeta42-induced toxicity. Hit compounds were further assayed for binding to Abeta42, radical scavenger activity, and their influence on the assembly structure of Abeta42. One compound, Ro 90-7501, was found to efficiently retard mature fibril formation, while extended polymeric Abeta42 sheets and fibrillar intermediates are accumulated. Ro 90-7501 may serve as a prototypic inhibitor for Abeta42 fibril formation and as a tool for studying the molecular mechanism of fibril assembly.  相似文献   

13.
Alzheimer disease is a neurodegenerative disorder that is tightly linked to the self-assembly and amyloid formation of the 39-43-residue-long amyloid-beta (Abeta) peptide. Considerable evidence suggests a correlation between Alzheimer disease development and the longer variants of the peptide, Abeta-(1-42/43). Currently, a molecular understanding for this behavior is lacking. In the present study, we have investigated the hydrogen/deuterium exchange of Abeta-(1-42) fibrils under physiological conditions, using solution NMR spectroscopy. The obtained residue-specific and quantitative map of the solvent protection within the Abeta-(1-42) fibril shows that there are two protected core regions, Glu11-Gly25 and Lys28-Ala42, and that the residues in between, Ser26 and Asn27, as well as those in the N terminus, Asp1-Tyr10, are solvent-accessible. This result reveals considerable discrepancies when compared with a previous investigation on Abeta-(1-40) fibrils and suggests that the additional residues in Abeta-(1-42), Ile41 and Ala42, significantly increase the solvent protection and stability of the C-terminal region Lys28-Ala42. Consequently, our findings provide a molecular explanation for the increased amyloidogenicity and toxicity of Abeta-(1-42) compared with shorter Abeta variants found in vivo.  相似文献   

14.
Egnaczyk GF  Greis KD  Stimson ER  Maggio JE 《Biochemistry》2001,40(39):11706-11714
The assembly of the beta-amyloid peptide (Abeta) into amyloid fibrils is essential to the pathogenesis of Alzheimer's disease. Detailed structural information about fibrillogenesis has remained elusive due to the highly insoluble, noncrystalline nature of the assembled peptide. X-ray fiber diffraction, infrared spectroscopy, and solid-state NMR studies performed on fibrils composed of Abeta peptides have led to conflicting models of the intermolecular alignment of beta-strands. We demonstrate here the use of photoaffinity cross-linking to determine high-resolution structural constraints on Abeta monomers within amyloid fibrils. A photoreactive Abeta(1-40) ligand was synthesized by substituting L-p-benzoylphenylalanine (Bpa) for phenylalanine at position 4 (Abeta(1-40) F4Bpa). This peptide was incorporated into synthetic amyloid fibrils and irradiated with near-UV light. SDS-PAGE of dissolved fibrils revealed the light-dependent formation of a covalent Abeta dimer. Enzymatic cleavage followed by mass spectrometric analysis demonstrated the presence of a dimer-specific ion at MH(+) = 1825.9, the predicted mass of a fragment composed of the N-terminal Abeta(1-5) F4Bpa tryptic peptide covalently attached to the C-terminal Abeta(29-40) tryptic peptide. MS/MS experiments and further chemical modifications of the cross-linked dimer led to the localization of the photo-cross-link between the ketone of the Bpa4 side chain and the delta-methyl group of the Met35 side chain. The Bpa4-Met35 intermolecular cross-link is consistent with an antiparallel alignment of Abeta peptides within amyloid fibrils.  相似文献   

15.
The beta-amyloid peptide (Abeta) is a normal product of the proteolytic processing of its precursor (beta-APP). Normally, it elicits a very low humoral immune response; however, the aggregation of monomeric Abeta to form fibrillar Abeta amyloid creates a neo-epitope, to which antibodies are generated. Rabbits were injected with fibrillar human Abeta(1-42), and the resultant antibodies were purified and their binding properties characterized. The antibodies bound to an epitope in the first eight residues of Abeta and required a free amino terminus. Additional residues did not affect the affinity of the epitope as long as the peptide was unaggregated; the antibody bound Abeta residues 1-8, 1-11, 1-16, 1-28, 1-40, and 1-42 with similar affinities. In contrast, the antibodies bound approximately 1000-fold more tightly to fibrillar Abeta(1-42). Their enhanced affinity did not result from their bivalent nature: monovalent Fab fragments exhibited a similar affinity for the fibrils. Nor did it result from the particulate nature of the epitope: monomeric Abeta(1-16) immobilized on agarose and soluble Abeta(1-16) exhibited similar affinities for the antifibrillar antibodies. In addition, antibodies raised to four nonfibrillar peptides corresponding to internal Abeta sequences did not exhibit enhanced affinity for fibrillar Abeta(1-42). Antibodies directed to the C-terminus of Abeta bound poorly to fibrillar Abeta(1-42), which is consistent with models where the carboxyl terminus is buried in the interior of the fibril and the amino terminus is on the surface. When used as an immunohistochemical probe, the antifibrillar Abeta(1-42) IgG exhibited enhanced affinity for amyloid deposits in the cerebrovasculature. We hypothesize either that the antibodies recognize a specific conformation of the eight amino-terminal residues of Abeta, which is at least 1000-fold more favored in the fibril than in monomeric peptides, or that affinity maturation of the antibodies produces an additional binding site for the amino-terminal residues of an adjacent Abeta monomer. In vivo this specificity would direct the antibody primarily to fibrillar vascular amyloid deposits even in the presence of a large excess of monomeric Abeta or its precursor. This observation may explain the vascular meningeal inflammation that developed in Alzheimer's disease patients immunized with fibrillar Abeta. Passive immunization with an antibody directed to an epitope hidden in fibrillar Abeta and in the transmembrane region of APP might be a better choice in the search for an intervention to remove Abeta monomers without provoking an inflammatory response.  相似文献   

16.
Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx). Chimeric Trx(Abeta15)n polypeptides bearing one, four, or eight copies of Abeta15 were constructed and injected into mice in combination with alum, an adjuvant approved for human use. All three polypeptides were found to be immunogenic, yet eliciting antibodies with distinct recognition specificities. The anti-Trx(Abeta15)4 antibody, in particular, recognized Abeta42 fibrils and oligomers but not monomers and exhibited the same kind of conformational selectivity against transthyretin, an amyloidogenic protein unrelated in sequence to Abeta. We have also demonstrated that anti-Trx(Abeta15)4, which binds to human AD plaques, markedly reduces Abeta pathology in transgenic AD mice. The data indicate that a conformational epitope shared by oligomers and fibrils can be mimicked by a thioredoxin-constrained Abeta fragment repeat and identify Trx(Abeta15)4 as a promising new tool for AD immunotherapy.  相似文献   

17.
AD (Alzheimer's disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39-43 residue long Abeta (amyloid-beta)-peptide. The most abundant species, Abeta(1-40) and Abeta(1-42), are both present within senile plaques, but Abeta(1-42) peptides are considerably more prone to self-aggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Abeta-peptides is vital. In the present study we have used quenched hydrogen/deuterium-exchange NMR experiments to probe the structure of Abeta(1-40) fibrils. The fibrils were prepared and analysed identically as in our previous study on Abeta(1-42) fibrils, allowing a direct comparison of the two fibrillar structures. The solvent protection pattern of Abeta(1-40) fibrils revealed two well-protected regions, consistent with a structural arrangement of two beta-strands connected with a bend. This protection pattern partly resembles the pattern found in Abeta(1-42) fibrils, but the Abeta(1-40) fibrils display a significantly increased protection for the N-terminal residues Phe4-His14, suggesting that additional secondary structure is formed in this region. In contrast, the C-terminal residues Gly37-Val40 show a reduced protection that suggests a loss of secondary structure in this region and an altered filament assembly. The differences between the present study and other similar investigations suggest that subtle variations in fibril-preparation conditions may significantly affect the fibrillar architecture.  相似文献   

18.
Alzheimer's disease (AD) is characterized by the aggregation and subsequent deposition of misfolded beta-amyloid (Abeta) peptide. Previous studies show that aggregated Abeta is more toxic in oligomeric than in fibrillar form, and that each aggregation form activates specific molecular pathways in the cell. We hypothesize that these differences between oligomers and fibrils are related to their different accessibility to the intracellular space. To this end we used fluorescently labelled Abeta1-42 and demonstrate that Abeta1-42 oligomers readily enter both HeLa and differentiated SKNSH cells whereas fibrillar Abeta1-42 is not internalized. Oligomeric Abeta1-42 is internalized by an endocytic process and is transported to the lysosomes. Inhibition of uptake specifically inhibits oligomer but not fibril toxicity. Our study indicates that selective uptake of oligomers is a determinant of oligomer specific Abeta toxicity.  相似文献   

19.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

20.
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the deposit of amyloid fibrils in the brain that result from the self-aggregative polymerization of the beta-amyloid peptide (Abeta). Evidence of a direct correlation between the ability of Abeta to form stable aggregates in aqueous solution and its neurotoxicity has been reported. The cytotoxic effects of Abeta have been attributed to the aggregation properties of a domain corresponding to the peptide fragment Abeta25-35. In an effort to generate novel inhibitors of Abeta neurotoxicity and/or aggregation, a mixture-based synthetic combinatorial library composed of 23 375 imidazopyridoindoles was generated and screened for inhibition of Abeta25-35 neurotoxicity toward the rat pheochromocytoma PC-12 cell line. The effect of the identified lead compounds on Abeta25-35 aggregation was then evaluated by means of circular dichroism (CD) and thioflavin-T fluorescence spectroscopy. Their activity against Abeta1-42 neurotoxicity toward the PC-12 cell line was also determined. The most active imidazopyridoindoles inhibited both Abeta25-35 and Abeta1-42 neurotoxicity in the low- to mid-micromolar range. Furthermore, inhibition of the random coil to beta-sheet transition and self-aggregation of Abeta25-35 was observed by CD and fluorescence spectroscopy, supporting the relationship between inhibition of the Abeta aggregation process and neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号