首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes corresponding to the L11, L1, L10, and L12 equivalent ribosomal proteins (L11e, L1e, L10e, and L12e) of Escherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus, and the L10 and four different L12 genes have been cloned and sequenced from the eucaryote Saccharomyces cerevisiae. Alignments between the deduced amino acid sequences of these proteins and to other available homologous proteins of eubacteria and eucaryotes have been made. The data suggest that the archaebacteria are a distinct coherent phylogenetic group. Alignment of the proline-rich L11e proteins reveals that the N-terminal region, believed to be responsible for interaction with release factor 1, is the most highly conserved region and that there is specific conservation of most of the proline residues, which may be important in maintaining the highly elongated structure of the molecule. Although L11 is the most highly methylated protein in the E. coli ribosome, the sites of methylation are not conserved in the archaebacterial L11e proteins. The L1e proteins of eubacteria and archaebacteria show two regions of very high similarity near the center and the carboxy termini of the proteins. The L10e proteins of all kingdoms are colinear and contain approximately three fourths of an L12e protein fused to their carboxy terminus, although much of this fusion has been lost in the truncated eubacterial protein. The archaebacterial and eucaryotic L12e proteins are colinear, whereas the eubacterial protein has suffered a rearrangement through what appear to be gene fusion events. Within the L12e derived region of the L10e proteins there exists a repeated module of 26 amino acids, present in two copies in eucaryotes, three in archaebacteria, and one in eubacteria. This modular sequence is apparently also present in the L12e proteins of all kingdoms and may play a role in L12e dimerization, L10e-L12e complex formation, and the function of the L10e-L12e complex in translation.  相似文献   

2.
3.
Summary Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain. Correspondence to: P. Dennis  相似文献   

4.
The structure of the gene for a small, very basic ribosomal protein in Sulfolobus solfataricus has been determined and the structure of the protein coded by this gene (L46e) has been confirmed by partial amino acid sequencing. The protein shows substantial sequence homology to the eukaryotic ribosomal proteins L39 in rat and L46 in yeast. There is no sequence homology to any of the eubacterial ribosomal proteins suggesting that this protein is absent in the eubacterial ribosome.  相似文献   

5.
The gene for the ribosomal L12 protein from the archaebacterium Methanococcus vannielii was cloned into the expression vector pKK223-3. The protein was overexpressed and remained stable in Escherichia coli XL1 cells. Purification yielded a protein with the same amino acid composition and sequence as in Methanococcus but it was acetylated at the N terminus as in the case with the homologous protein of E. coli. The in vivo incorporation of the overexpressed protein into the E. coli ribosomes was not observed. The overexpressed M. vannielii protein MvaL12e was incorporated into halobacterial ribosomes, thereby displacing the corresponding halobacterial L12 protein. Intact 70 S ribosomes were reconstituted from halobacterial 50 S subunits carrying the MvaL12e protein. These ribosomes were as active as native halobacterial ribosomes in a poly(U) assay. On the other hand, our attempts to incorporate L12 proteins from Bacillus stearothermophilus and E. coli into halobacterial ribosomes were not successful. These results support the conclusion which is based on primary sequence and predicted secondary structure comparisons that there exist two distinct L12 protein families, namely the eubacterial L12 protein family and the eukaryotic/archaebacterial L12 protein family.  相似文献   

6.
The primary structure of ribosomal protein L12 from Methanococcus vannielii has been determined by direct amino acid sequence analysis with automated liquid phase Edman degradation of the entire protein and manual 4-N,N'-dimethylaminoazobenzene-4'-isothiocyanate/phenylisothiocyanate sequencing of fragments obtained by enzymatic digestion and by partial acid hydrolysis. The knowledge of the amino acid sequences of these various fragments allowed the synthesis of two oligonucleotide probes complementary to the 5'- and the 3'-end of the gene, and they were used for hybridization with digested M. vannielii chromosomal DNA. Both oligonucleotide probes gave similar and clear hybridization signals. The plasmid pMvaX1 containing the entire gene of protein L12 was obtained. The nucleotide sequence complemented the partial amino acid sequence, and it is in full agreement with the protein sequence and the amino acid analysis. Comparison of secondary structural elements and hydrophobicity plots of the M. vannielii protein L12 with the known L12 sequences derived from other archaebacterial and eukaryotic sources show strong homologies among these sequences. They contain an exceptional highly conserved hydrophilic sequence area in the C-terminal part of the proteins. In comparison with eubacterial L12 proteins, the conservation is reduced to single amino acid residues. However, the eubacterial L12 proteins have hydrophilic regions similar to those of L12 from M. vannielii. These regions are predicted to be located at the surface of the proteins, as has been proven to be the case in crystallized Escherichia coli L12 protein. It is possible that the strongly conserved hydrophilic sequence regions form part of the factor-binding domain.  相似文献   

7.
Large ribosomal subunits from Sulfolobus solfataricus were cross-linked with 2-iminothiolane in order to investigate the arrangement of proteins in the region containing the multicopy acidic protein Sso L12e, the protein homologous to Escherichia coli L7/L12. Proteins from cross-linked 50 S subunits were extracted and fractionated by chromatography on CM-cellulose. Fractions containing Sso L12e were analyzed by "diagonal" (two-dimensional reducing/nonreducing) dodecyl sulfate polyacrylamide gel electrophoresis. Sso L12e appeared in cross-linked homodimers and also in cross-linked complexes that contained Sso L10e, the protein equivalent to E. coli L10. In addition, Sso L12e was found in cross-links to L4, L6a, L26, and L29. N-terminal sequences obtained for L6a and L26 showed them to have significant homologies to E. coli proteins L11 and L23, respectively. The results indicate the presence in this archaebacterial ribosome of Sso L12e dimers and their location near Sso L10e and Sso L11e. The Sso L12e-L29 (Sso L23e) cross-link suggests proximity between components of the factor-binding and peptidyltransferase domains, since E. coli L23 is a protein affinity-labeled by puromycin. The (Sso L12e)4-Sso L10 pentameric complex, identified previously from studies in solution, appears to represent correctly the arrangement of these proteins in the ribosome. The occurrence in the archaebacterial ribosome of this unique structural element, similar to those shown previously in eubacteria and eukaryotes, reinforces the concept that the protein quaternary structure of the ribosomal factor-binding domain is highly conserved.  相似文献   

8.
It has been shown by electron microscopy that the selective removal of the stalk from 50S ribosomal subunits of two representative archaebacteria, namely Methanococcus vaniellii and Sulfolobus solfataricus, is accompanied by loss of the archaebacterial L10 and L12 proteins. The stalk was reformed if archaebacterial core particles were reconstituted with their corresponding split proteins. Next, structurally intact chimeric 50S subunits have been reconstituted in vitro by addition of Escherichia coli ribosomal proteins L10 and L7/L12 to 50S core particles from M vaniellii or S solfataricus, respectively. In the reverse experiment, using core particles from E coli and split proteins from M vaniellii, stalk-bearing 50S particles were also obtained. Analysis of the reconstituted 50S subunits by immunoblotting revealed that E coli L10 was incorporated into archaebacterial core particles in both presence or absence of E coli L7/L12. In contrast, incorporation of E coli L7/L12 into archaebacterial cores was only possible in the presence of E coli L10. Our results suggest that in archaebacteria - as in E coli - the stalk is formed by archaebacterial L12 proteins that bind to the ribosome via L10. The structural equivalence of eubacterial and archaebacterial L10 and L12 proteins has thus for the first time been established. The chimeric reconstitution experiments provide evidence that the domain of protein L10 that interacts with the ribosomal particle is highly conserved between eubacteria and archaebacteria.  相似文献   

9.
Desulfovibrio vulgaris Hildenborough contains a family of genes for methyl-accepting chemotaxis proteins (MCPs). Here we report the complete sequence of the gene for Desulfovibrio chemoreceptor H (dcrH). The deduced amino acid sequence of DcrH protein, which has an enlarged N-terminal, ligand binding domain, indicates a structure similar to that of other MCPs. Comparison of the sequences for DcrA, determined earlier, and DcrH indicated that similarity is essentially limited to the C-terminal excitation region. The dcr gene family differs, in this respect, from mcp gene families in other eubacteria (e.g. Escherichia coli and Bacillus subtilis), where MCPs share significant homology throughout their C-terminal signal transduction domains. This may point to an ancient evolutionary origin of the dcr gene family, which is widely distributed throughout the genus Desulfovibrio. The evolutionary origin of mcp genes was traced by comparing nucleotide sequences for the excitation region that is common to all MCPs. Phylogenetic analysis of sequences for thirty mcp genes from nine eubacterial and one archaebacterial species suggested that multiplication of mcp genes has occurred at least twice since the eubacteria diverged from the archaebacteria.Nucleotide accession number: The nucleotide sequence reported in this paper has been entered into GenBank under accession number U30319. Phone: 403-220-6388. Fax: 403-289-9311. Electronic mail address: voordouw@acs.ucalgary.ca.  相似文献   

10.
A number of proteins have been identified that contain prominent sequence signatures that are uniquely shared by the members of the Deinococcus-Thermus genera and the cyanobacterial species but which are not found in any of the other eubacterial or archaebacterial homologs. The proteins containing such sequence signatures include (1) the DnaJ/Hsp40 family of proteins, (2) DNA polymerase I, (3) the protein synthesis elongation factor EF-Tu, and (4) the elongation factor EF-Ts. A strong affinity of the Deinococcus-Thermus species to cyanobacteria is also seen in the phylogenetic trees based on Hsp70 and DnaJ sequences. These results provide strong evidence of a close and specific evolutionary relationship between species belonging to these two eubacterial divisions. Received: 10 September 1997 / Accepted: 15 December 1997  相似文献   

11.
12.
The primary structure of rat ribosomal protein L8.   总被引:1,自引:0,他引:1  
The amino acid sequence of the rat 60S ribosomal subunit protein L8 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L8 has 257 amino acids and has a molecular weight of 28,007. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 4 or 5 copies of the L8 gene. The mRNA for the protein is about 950 nucleotides in length. Rat L8 is homologous to ribosomal proteins from other eukaryotes and to proteins from eubacterial, archaebacterial, and chloroplast ribosomes.  相似文献   

13.
The amino acid sequence of the rat 60S ribosomal subunit protein L3 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L3 has 403 amino acids and has a molecular weight of 46,106. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 7 to 9 copies of the L3 gene. The mRNA for the protein is about 1,400 nucleotides in length. Rat L3 is homologous to ribosomal proteins from other eukaryotes and to proteins from eubacterial, archaebacterial, and chloroplast ribosomes.  相似文献   

14.
Basic, low-molecular-weight DNA-binding proteins were isolated from the unicellular cyanobacterium Synechococcus sp. PCC 7002 (Agmenellum quadruplicatum) and from the chloroplasts of spinach (Spinacia oleacera). In Synechococcus, two major proteins which bind to double-strand DNA (10 and 16 kDa, respectively) were purified. The 10 kDa protein, named HAq, resembles strongly, in amino-acid composition, eubacterial HU-type proteins. The 16 kDa protein is slightly basic. Its characteristics are compared to those of E. coli protein H1 and 17K. In spinach chloroplasts, a major protein HC (10 kDa), which also binds to ds-DNA, was purified. As observed for known archaebacterial and mitochondrial DNA-binding proteins, its amino-acid composition differs significantly from those of eubacterial HU. The comparison of the amino-terminal sequence (27 residues) with other chloroplast peptidic sequences is discussed.  相似文献   

15.
The large subunit of eukaryotic ribosomes contains acidic phosphoproteins which are related to L7/L12 from Escherichia coli. In the brine shrimp Artemia these proteins are designated eL12 and eL12'. We have isolated cDNA clones for these proteins from a cDNA bank that was constructed by the use of size-fractionated poly(A)-rich RNA (8-10S fraction) from Artemia and a synthetic oligonucleotide as primer. Clones containing DNA sequences coding for eL12 and eL12 were characterized by hybrid-selected translation and DNA sequencing. The proteins eL12 and eL12' share an identical peptide of 22 amino acids at their carboxy termini whereas the remaining part of the protein shows little sequence homology. The nucleotide sequences show a different codon use for the amino acids in the common carboxy terminus, thereby excluding a common exon coding for this part of both proteins. Despite the differences in amino acid sequence in the major part of eL12 and eL12' the proteins have a considerable degree of homology on the basis of the distribution of hydrophobic and hydrophilic amino acids over the polypeptide chains, in agreement with a related folding and function of both proteins. Relative levels of mRNA coding for eL12, eL12' and elongation factor 1 alpha were determined during the development of Artemia from a dormant cyst to a nauplius. The data show a coordinate expression of the genes for EF-1 alpha and both ribosomal proteins, excluding a differential expression of the genes for these related ribosomal proteins during embryogenesis. Analysis of the gene copy number for eL12 and eL12' indicates the presence of a few genes for each protein.  相似文献   

16.
The rplI gene encoding the ribosomal protein L9 was found 4 kbp downstream from the desA gene, but on the opposite strand, in the genome of the cyanobacterium Synechocystis PCC6803. The deduced amino acid sequence is homologous to the sequences of the L9 proteins from Escherichia coli and chloroplasts of Arabidopsis and pea. The gene is present as a single copy in the chromosome and is transcribed as a mRNA of 0.64 kb. An open reading frame of unknown function (ORF291) was found in the upstream region of the rplI gene.  相似文献   

17.
The structure of the gene for a small, very basic ribosomal protein in Sulfolobus solfataricus has been determined and the structure of the protein coded by this gene (L46e) has been confirmed by partial amino acid sequencing. The protein shows substantial sequence homology to the eukaryotic ribosomal proteins L39 in rat and L46 in yeast. There is no sequence homology to any of the eubacterial ribosomal proteins suggesting that this protein is absent in the eubacterial ribosome.  相似文献   

18.
Summary A 2.7 kilobase pair (Kb) fragment of DNA, which complements mutations in the hisI locus of Escherichia coli, has been cloned and sequenced from the genome of the methanogenic archaebacterium Methanococcus vannielii. The cloned DNA directs the synthesis of three polypeptides, with molecular weights of 71,000, 29,000 and 15,600 in minicells of E. coli. Subcloning and mutagenesis demonstrates that hisI complementation results from the activity of the 15,600 molecular weight polypeptide. The primary structure of this archaebacterial gene and its gene product have been compared with the functionally equivalent gene and protein from the eubacterium E. coli (hisI) (Chiariotti et al. 1986) and from the eucaryote Saccharomyces cerevisiae (his4A) (Donahue et al. 1982). The DNA sequences of the archaebacterial and eubacterial genes are 40% homologous, the archaebacterial and eucaryotic DNA sequences are 47% homologous and, as previously reported (Bruni et al. 1986) the eubacterial and eucaryotic DNA sequences are 45% homologous. In E. coli the hisI locus is part of a bifunctional gene (hisI/E) within the single his operon. In S. cerevisiae the his4A locus is part of a multifunctional gene (his4) which encodes a protein with at least four enzymatic activities. The his genes of S. cerevisiae do not form an operon and are not physically linked. The M. vannielii hisI gene does not appear to be part of a multifunctional DNA sequence and, although it does appear to be within an operon, the open reading frames (ORFs) 5 and 3 to the M. vannielii hisI gene are not related to any published his sequences. The hisI and hisA genes (Cue et al. 1985) of M. vannielii are not closely linked in its genome.  相似文献   

19.
The 70-kDa heat-shock protein (HSP70) constitutes the most conserved protein present in all organisms that is known to date. Based on global alignment of HSP70 sequences from organisms representing all three domains, numerous sequence signatures that are specific for prokaryotic and eukaryotic homologs have been identified. HSP70s from the two archaebacterial species examined (viz., Halobacterium marismortui and Methanosarcina mazei) have been found to contain all eubacterial but no eukaryotic signature sequences. Based on several novel features of the HSP70 family of proteins (viz., presence of tandem repeats of a 9-amino-acid [a.a.] polypeptide sequence and structural similarity between the first and second quadrants of HSP70, homology of the N-terminal half of HSP70 to the bacterial MreB protein, presence of a conserved insert of 23–27 a.a. in all HSP70s except those from archaebacteria and gram-positive eubacteria) a model for the evolution of HSP70 gene from an early stage is proposed. The HSP70 homologs from archaebacteria and gram-positive bacteria lacking the insert in the N-terminal quadrants are indicated to be the ancestral form of the protein. Detailed phylogenetic analyses of HSP70 sequence data (viz., by bootstrap analyses, maximum parsimony, and maximum likelihood methods) provide evidence that archaebacteria are not monophyletic and show a close evolutionary linkage with the gram-positive eubacteria. These results do not support the traditional archaebacterial tree, where a close relationship between archaebacterial and eukaryotic homologs is observed. To explain the phylogenies based on HSP70 and other gene sequences, a model for the origin of eukaryotic cells involving fusion between archaebacteria and gram-negative eubacteria is proposed. Correspondence to: R. S. Gupta  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号