首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This communication describes experiments showing that safranine, at the concentrations usually employed as a probe of mitochondrial membrane potential, causes significant undesirable side effects on Ca2+ transport by liver mitochondria. The major observations are: (i) safranine potentiates the spontaneous Ca2+ release from liver mitochondria induced by phosphate or acetoacetate. This is paralelled by potentiation of the release of state-4 respiration and of the rate of mitochondrial swelling, indicating a generalized effect of the dye on the mitochondrial membrane; (ii) the efflux of mitochondrial Ca2+ stimulated by hydroperoxide is irreversible in the presence of safranine even if membrane stabilizers such as Mg2+ and ATP are present. It is concluded that the use of safranine to monitor the changes in membrane potential during Ca2+ transport by mitochondria should be avoided or special care be taken.  相似文献   

2.
Ca2+ efflux from rat liver mitochondria can occur when endogenous nicotinamide nucleotides are oxidized. It is suggested that nicotinamide nucleotide induced by acetoacetate sensitizes the mitochondria to damaage resulting from the accumulation of Ca2+ in the presence of Pi. Thus, acetoacetate-induced Ca2+ efflux is associated with a loss of respiratory control. Both the effluxes induced by acetoacetate and by high Ca2+ accumulation are prevented by ATP plus oligomycin, although these agents do not prevent the endoagenous nicotinamide nucleotides from becoming oxidized on addition of acetoacetate. Acetoacetate addition only results in Ca2+ release if the Ca2+ and Pi concentration are above a critical value. The acetoacetate-induced Ca2+ effflux is exactly paralled by the virtually complete collapse of the membrane potential. The presence of acetoacetate decreases the concentration of total Ca2+ necessary to induced mitochondrial damage by about 130 nmol of Ca2+/mg of protein. It is concluded that acetoacetate-induced efflux occurs by reversal of the Ca2+ uniporter after the collapse of the membrane potential.  相似文献   

3.
The verapamil-sensitive Ca2+ channel in the synaptosomal plasma membrane is investigated. Verapamil is without effect on Ca2+ uptake or steady-state content in synaptosomes with a polarized plasma membrane, but completely inhibits the additional Ca2+ uptake following plasma-membrane depolarization by high [K+], by veratridine plus ouabain or by high concentrations of the permeant cation tetraphenylphosphonium. Verapamil-insensitive Ca2+ influx and steady-state content are identical in polarized and depolarized synaptosomes, even though the Na+ electrochemical potential is greatly decreased in the latter, indicating that Na+/Ca2+ exchange is not a significant mechanism for Ca2+ efflux under these conditions. A transient Na+-dependent Ca2+ efflux can only be observed on addition of Na+ to Na+-depleted depolarized synaptosomes. While 0.2 mM verapamil decreases the ate of 86Rb+ efflux and 22Na+ entry during depolarization induced by veratridine plus ouabain, the final steady-state Na+ accumulation is not inhibited. Ca2+ efflux from synaptosomes following mitochondrial depolarization does not occur by a verapamil-sensitive pathway.  相似文献   

4.
Compound YS 035 [NN-bis-(3,4-dimethoxyphenethyl)-N-methylamine] is a new synthetic compound capable of inhibiting Ca2+ uptake by different cells. The inhibition of Ca2+ uptake by muscle cells isolated from chicken embryo is dose-dependent in the compound YS 035 concentration range 10-30 microM. The new compound also inhibits Ca2+ entry into rat brain synaptosomes and less effectively into baby-hamster kidney cells. Compound YS 035 partially inhibits the slow Ca2+ release induced by Ruthenium Red and the rapid Na+-dependent efflux from heart mitochondria. The inhibition of the Na+/Ca2+ exchange appears to be of a non-competitive type with an apparent Ki of 28 microM. The new Ca2+ antagonist totally inhibits the Ca2+ efflux from liver mitochondria induced by Ruthenium Red, but it does not affect the release induced by uncoupler, respiratory inhibitor or chelator, nor the mitochondrial ATP synthesis and membrane potential. The properties shown by the new compound indicate it to be a Ca2+ antagonist and a useful tool for studies on the mitochondrial Ca2+ transport.  相似文献   

5.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

6.
The effect of pH changes on Ca2+ transport by isolated heart mitochondria was measured. Two components of Ca2+ transport were identified, an accumulation dependent on mitochondrial respiration and a Na+-dependent efflux. A decrease of pH over the range 7.7-6.7 reduced the initial rate and the total amount of respiration dependent Ca2+ accumulation. At pH 7.2 the [Na+] required to activate half-maximal efflux, k1/2, was 7.5 +/- 1.1 mM. Decreasing the pH over the range 7.7 to 6.9 increased the k1/2 from 3.6 to 11.6. The effect of acidosis was more profound on the respiration dependent Ca2+ uptake than the Na+-dependent efflux.  相似文献   

7.
The effect of calcium (Ca+2) on the respiration rate of mature rab bit epididymal sperm was studied. The addition of Ca+2 did not further stimulate the respiration rate of sperm already stimulated by glucose or pyruvate. Oligomycin, which inhibits mitochondrial ATP synthesis and slows respiration, did not inhibit the uptake of mitochond rial Ca+2. The addition of the ionophore A23187, which promotes selective permeability of cell membranes to Ca+2, caused a marked stimulation of respiration when Ca+2 was added, indicating that the sperm cell membrane is not permeable to Ca+2. The stimulation of the respiration rate by pyruvate, but not glucose, was enhanced by the addition of 45 mM HCO3, which did not affect the response to added Ca+2. With or without Ca+2, cyclic AMP and dibutyl cyclic AMP did not stimulate respiration in the presence of pyruvate or glucose. The results suggest that mature rabbit sperm from the cauda epididymis are intrinsically motile, and not dependent on Ca+2.  相似文献   

8.
The paper analyzes the relationship between membrane potential (delta psi), steady state pCao (-log [Ca2+] in the outer aqueous phase) and rate of ruthenium-red-induced Ca2+ efflux in liver mitochondria. Energized liver mitochondria maintain a pCao of about 6.0 in the presence of 1.5 mM Mg2+ and 0.5 mM Pi. A slight depression of delta psi results in net Ca2+ uptake leading to an increased steady state pCao. On the other hand, a more marked depression of delta psi results in net Ca2+ efflux, leading to a decreased steady-state pCao. These results reflect a biphasic relationship between delta psi and pCao, in that pCao increases with the increase of delta psi up to a value of about 130 mV, whereas a further increase of delta psi above 130 mV results in a decrease of pCao. The phenomenon of Ca2+ uptake following a depression of delta psi is independent of the tool used to affect delta psi whether by inward K+ current via valinomycin, or by inward H+ current through protonophores or through F1-ATP synthase, or by restriction of e- flow. The pathway for Ca2+ efflux is considerably activated by stretching of the inner membrane in hypotonic media. This activation is accompanied by a decreased pCao at steady state and by an increased rate of ruthenium-red-induced Ca2+ efflux. By restricting the rate of e- flow in hypotonically treated mitochondria, a marked dependence of the rate of ruthenium-red-induced Ca2+ efflux on the value of delta psi is observed, in that the rate of Ca2+ efflux increases with the value of delta psi. The pCao is linearly related to the rate of Ca2+ efflux. Activation of oxidative phosphorylation via addition of hexokinase + glucose to ATP-supplemented mitochondria, is followed by a phase of Ca2+ uptake, which is reversed by atractyloside. These findings support the view that Ca2+ efflux in steady state mitochondria occurs through an independent, delta psi-controlled pathway and that changes of delta psi during oxidative phosphorylation can effectively modulate mitochondrial Ca2+ distribution by inhibiting or activating the delta psi-controlled Ca2+ efflux pathway.  相似文献   

9.
1. A depolarisation of the membrane of rat liver mitochondria, as measured with the safranine method, is seen during Ca2+ uptake. The depolarisation is followed by a slow repolarisation, the rate of which can be increased by the addition of EGTA or phosphate. 2. Plots relating the initial rate of calcium ion (Ca2+) uptake and the decrease in membrane potential (delta psi) to the Ca2+ concentration show a half-maximal change at less than 10 micron Ca2+ and a saturation above 20 micron Ca2+. 3. Plots relating the initial rate of Ca2+ uptake to delta psi are linear. 4. Addition of Ca2+ chelators, nitriloacetate or EGTA, to deenergized mitochondria equilibrated with Ca2+ causes a polarisation of the mitochondrial membrane due to a diffusion potential created by electrogenic Ca2+ efflux. 5. If the extent of the response induced by different nitriloacetate concentrations is plotted against the expected membrane potential a linear plot is obtained up to 70 mV with a slope corresponding to two-times the extent of the response induced by valinomycin in the presence of different potassium ion gradients. This suggests that the Ca2+ ion is transferred across the membrane with one net positive charge in present conditions.  相似文献   

10.
Comparative intracellular distribution of Ca2+, Mg2+ and adenine nucleotides has been studied in pig heart by differential centrifugation or fractional extraction and has shown that Mg2+ and ATP are associated mainly with soluble fractions whereas Ca2+ and ADP are more tightly bound to subcellular structures. Ca2+ accumulation and Ca2+ stimulated respiration were studied in pig heart mitochondria under different energetic conditions in the absence or presence of phosphate. Ca2+ concentrations of about 1200 nmoles/mg protein inhibit Ca2+ accumulation, site I substrate oxidation and induce an efflux of mitochondrial Mg2+. These deleterious effects of Ca2+ on respiration occur even in the absence of phosphate or oxidizable substrate; they are completely prevented by ruthenium red only, and partially prevented by the addition of M2+ to the medium. The kinetics of Ca2+ uptake become of the sigmoidal type when Mg2+ is present. This cation strongly inhibits the rate of Ca2+ uptake in the presence of added phosphate and decreases the affinity of Ca2+ for its transport system. In the absence of phosphate, Mg2+ has no effect on Ca2+ uptake. The possible physiological implications of these findings are discussed  相似文献   

11.
Lysophospholipids inhibited mitochondrial Ca2+ uptake, induced a net Ca2+ efflux, and thereby increased the extramitochondrial Ca2+ concentration. The inhibitory potency decreased in the order lysophosphatidylcholine (LPC) = lysophosphatidylglycerol (LPG) greater than lysophosphatidylinositol (LPI) greater than lysophosphatidylserine (LPS) much greater than lysophosphatidylethanolamine (LPE). This relative order is in inverse relation to the ability of the various phospholipid head-groups to build up intermolecular hydrogen bonds with neighbouring membrane lipids. This indicates that changes in Ca2+ transport induced by lysophospholipids are mediated by the interaction of the lysophospholipids with the mitochondrial membrane bilayer structure. The mitochondrial membrane potential, which is the main driving force for mitochondrial Ca2+ uptake, was affected in the same order by the various lysophospholipids. This reduction of the mitochondrial membrane potential may be the underlying cause for the inhibition of the mitochondrial Ca2+ uniport and the resulting release of Ca2+ from the mitochondria.  相似文献   

12.
Ca2+ transport in mitochondria was studied in situ using digitonin-permeabilized cells of the ciliate protozoan Tetrahymena pyriformis GL. In the presence of oxidizable substrates and inorganic phosphate, mitochondria were able to accumulate a large amount of the added Ca2+ without subsequent uncoupling and mitochondrial damage. However, the maximal Ca2+ uptake dramatically decreased in the presence of micromolar concentrations of the fluorescent calcium indicator, chlortetracycline, which in aerobic conditions caused an uncoupling of the respiration in Ca2+-loaded mitochondria. Moreover, on reaching hypoxia, when the rate of oxygen diffusion from the air to the stirred incubation medium became a limiting factor, continuous Ca2+ oscillations were observed. Ca2+ fluxes were synchronous with the cyclic changes of the membrane potential and were followed with a significant delay by the changes of the membrane-associated fluorescence of Ca-chlortetracycline complexes. Both the chlortetracycline-induced uncoupling of the respiration and the oscillations were prevented by either EGTA or ruthenium red. It is suggested that in conditions of the limited rate of respiration the oscillations are generated as a result of the functioning of the two Ca2+-transport pathways: a Ca2+ uniport and a chlortetracycline-mediated electroneutral Ca2+ efflux.  相似文献   

13.
Acetoacetate, an NADH oxidant, stimulated the ruthenium red-insensitive rat liver mitochondrial Ca(2+) efflux without significant release of state-4 respiration, disruption of membrane potential (Deltapsi) or mitochondrial swelling. This process is compatible with the opening of the currently designated low conductance state of the permeability transition pore (PTP) and, under our experimental conditions, was associated with a partial oxidation of the mitochondrial pyridine nucleotides. In contrast, diamide, a thiol oxidant, induced a fast mitochondrial Ca(2+) efflux associated with a release of state-4 respiration, a disruption of Deltapsi and a large amplitude mitochondrial swelling. This is compatible with the opening of the high conductance state of the PTP and was associated with extensive oxidation of pyridine nucleotides. Interestingly, the addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to the acetoacetate experiment promoted a fast shift from the low to the high conductance state of the PTP. Both acetoacetate and diamide-induced mitochondrial permeabilization were inhibited by exogenous catalase. We propose that the shift from a low to a high conductance state of the PTP can be promoted by the oxidation of NADPH. This impairs the antioxidant function of the glutathione reductase/peroxidase system, strongly strengthening the state of mitochondrial oxidative stress.  相似文献   

14.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

15.
ADP greatly enhances the rate of Ca2+ uptake and retention in Ca2+ loaded mitochondria. Atractyloside, a specific inhibitor of the ADP/ATP translocator, completely inhibits the ADP effect, while bongkrekate, another specific inhibitor of the translocator enhances the effect of ADP. These results indicate that locking the ADP/ATP translocator in the M-state is sufficient to produce the ADP effect. Cyclosporin A, a specific inhibitor of the Ca2(+)-induced membrane permeabilization does not substitute for ADP, indicating that ADP directly affect the rate of electrogenic Ca2+ uptake. The effect of the translocator conformation on the rate of electrogenic Ca2+ uptake is independent of the concentration of Pi and is not caused by changes in membrane potential. However, locking the carrier in the M-state appears to increase the negative surface charge on the matrix face of the inner membrane. This may lead to an enhanced rate of Ca2+ dissociation from the electrogenic carrier at the matrix surface. The rate of Na(+)-independent Ca2+ efflux is only slightly inhibited by locking the carrier in the M-state, presumably due to the same mechanism. In the presence of ADP, Pi inhibits the Na(+)-independent efflux. In the presence of physiological concentrations of spermine, Pi and Mg2+, the rate of Ca2+ uptake, Ca2+ retention and Ca2+ set points depend sharply on ADP concentration at the physiological range of ADP. Thus, changes of cytosolic ADP concentration may lead to change in the rate of Ca2+ uptake by mitochondria and thus modulate the excitation-relaxation cycles of cytoplasmic free calcium.  相似文献   

16.
The effects of arachidonic acid and other fatty acids on mitochondrial Ca2+ transport were studied. Cis-unsaturated fatty acids generally strongly inhibited mitochondrial Ca2+ uptake, induced a net Ca2+ efflux, and thereby increased the extramitochondrial Ca2+ concentration, whereas trans-unsaturated fatty acids were ineffective. Saturated fatty acids exhibited slight activity at chain lengths from C(10) to C(14) only. The structure-activity relationship and the inability of some of the effective fatty acids such as palmitoleic and myristoleic acid to be metabolized to eicosanoids suggest that Ca2+ release was induced by the fatty acids themselves and resulted from changes in the mitochondrial membrane bilayer structure. There was a correlation between Ca2+-releasing potency and reduction of mitochondrial membrane potential, which is the main driving force for mitochondrial Ca2+ uptake. There were, however, considerable differences compared with the effects of lysophospholipids on the membrane potential. The mechanism of action of fatty acids may be that of a fluidizing effect on the hydrophobic core of the membrane, thereby modulating the activity of integral membrane proteins of the respiratory chain.  相似文献   

17.
1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.  相似文献   

18.
Phenylephrine (2.0 microM) induces an alpha 1-receptor-mediated net efflux of Ca2+ from livers of fed rats perfused with medium containing physiological concentrations (1.3 mM) of Ca2+. The onset of efflux (7.1 +/- 0.5 s; n = 16) immediately precedes a stimulation of mitochondrial respiration and glycogenolysis. Maximal rates of efflux are observed between 35 s and 45 s after alpha-agonist administration; thereafter the rate decreases, to be no longer detectable after 3 min. Within seconds of terminating phenylephrine infusion, a net transient uptake of Ca2+ by the liver is observed. Similar effects were observed with vasopressin (1 m-unit/ml) and angiotensin (6 nM). Reducing the perfusate [Ca2+] from 1.3 mM to 10 microM had little effect on alpha-agonist-induced Ca2+ efflux, but abolished the subsequent Ca2+ re-uptake, and hence led to a net loss of 80-120 nmol of Ca2+/g of liver from the tissue. The administration at 5 min intervals of short pulses (90 s) of phenylephrine under these conditions resulted in diminishing amounts of Ca2+ efflux being detected, and these could be correlated with decreased rates of alpha-agonist-induced mitochondrial respiration and glucose output. An examination of the Ca2+ pool mobilized by alpha-adrenergic agonists revealed that a loss of Ca2+ from mitochondria and from a fraction enriched in microsomes accounts for all the Ca2+ efflux detected. It is proposed that the alpha-adrenergic agonists, vasopressin and angiotensin mobilize Ca2+ from the same readily depleted intracellular pool consisting predominantly of mitochondria and the endoplasmic reticulum, and that the hormone-induced enhanced rate of mitochondrial respiration and glycogenolysis is directly dependent on this mobilization.  相似文献   

19.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

20.
Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号