首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adherence molecules are key players in pathogen-host interactions. These are usually surface-exposed structures that facilitate adherence to host cells, or target host serum proteins of the extracellular matrix. Our knowledge of the function of pneumococcal cell-surface structures, and the basic mechanisms underlying their interaction with host receptor molecules has dramatically increased, through molecular and structural analysis of adherence molecules. In particular, choline-binding proteins have received considerable attention because of their versatility, and their sophisticated role in the interaction with host proteins. Interestingly, subversion of host-protein functions to facilitate host invasion and immune evasion has also been attributed to intracellular or surface-exposed proteins of the pathogen. Many of these molecules do not possess the classic features of bacterial surface proteins.  相似文献   

2.
Colonization of mucosal respiratory surfaces is a prerequisite for the human pathobiont Streptococcus pneumoniae (the pneumococcus) to cause severe invasive infections. The arsenal of pneumococcal adhesins interacts with a multitude of extracellular matrix proteins. A paradigm for pneumococci is their interaction with the adhesive glycoprotein fibronectin, which facilitates bacterial adherence to host cells. Here, we deciphered the molecular interaction between fibronectin and pneumococcal fibronectin‐binding proteins (FnBPs) PavA and PavB respectively. We show in adherence and binding studies that the pneumococcal interaction with fibronectin is a non‐human specific trait. PavA and PavB target at least 13 out of 15 type III fibronectin domains as demonstrated in ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays. Strikingly, both pneumococcal FnBPs recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III repeat epitopes cluster on the inner strands of both β‐sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1, FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB respectively. In conclusion, our study suggests a common pattern of molecular interactions between pneumococcal FnBPs and fibronectin. The specific epitopes recognized in this study can potentially be tested as antimicrobial targets in further scientific endeavours.  相似文献   

3.
Bacterial cell-surface proteins play integral roles in host-pathogen interactions. These proteins are often architecturally and functionally sophisticated and yet few studies of such proteins involved in host-pathogen interactions have defined the domains or modules required for specific functions. Streptococcus pneumoniae (pneumococcus), an opportunistic pathogen that is a leading cause of community acquired pneumonia, otitis media and bacteremia, is decorated with many complex surface proteins. These include β-galactosidase BgaA, which is specific for terminal galactose residues β-1–4 linked to glucose or N-acetylglucosamine and known to play a role in pneumococcal growth, resistance to opsonophagocytic killing, and adherence. This study defines the domains and modules of BgaA that are required for these distinct contributions to pneumococcal pathogenesis. Inhibitors of β-galactosidase activity reduced pneumococcal growth and increased opsonophagocytic killing in a BgaA dependent manner, indicating these functions require BgaA enzymatic activity. In contrast, inhibitors increased pneumococcal adherence suggesting that BgaA bound a substrate of the enzyme through a distinct module or domain. Extensive biochemical, structural and cell based studies revealed two newly identified non-enzymatic carbohydrate-binding modules (CBMs) mediate adherence to the host cell surface displayed lactose or N-acetyllactosamine. This finding is important to pneumococcal biology as it is the first adhesin-carbohydrate receptor pair identified, supporting the widely held belief that initial pneumococcal attachment is to a glycoconjugate. Perhaps more importantly, this is the first demonstration that a CBM within a carbohydrate-active enzyme can mediate adherence to host cells and thus this study identifies a new class of carbohydrate-binding adhesins and extends the paradigm of CBM function. As other bacterial species express surface-associated carbohydrate-active enzymes containing CBMs these findings have broad implications for bacterial adherence. Together, these data illustrate that comprehending the architectural sophistication of surface-attached proteins can increase our understanding of the different mechanisms by which these proteins can contribute to bacterial pathogenesis.  相似文献   

4.
Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen‐like protein‐1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA‐containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C‐C’ loop region recognized by the α9β1 integrin. The extracellular 2‐D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.  相似文献   

5.
The molecular pathogenesis of many Staphylococcus aureus infections involves growth of bacteria as biofilm. In addition to polysaccharide intercellular adhesin (PIA) and extracellular DNA, surface proteins appear to mediate the transition of bacteria from planktonic growth to sessile lifestyle as well as biofilm growth, and can enable these processes even in the absence of PIA expression. However, the molecular mechanisms by which surface proteins contribute to biofilm formation are incompletely understood. Here we demonstrate that self‐association of the serine‐aspartate repeat protein SdrC promotes both bacterial adherence to surfaces and biofilm formation. However, this homophilic interaction is not required for the attachment of bacteria to abiotic surfaces. We identified the subdomain that mediates SdrC dimerization and subsequent cell‐cell interactions. In addition, we determined that two adjacently located amino acid sequences within this subdomain are required for the SdrC homophilic interaction. Comparative amino acid sequence analysis indicated that these binding sites are conserved. In summary, our study identifies SdrC as a novel molecular determinant in staphylococcal biofilm formation and describes the mechanism responsible for intercellular interactions. Furthermore, these findings contribute to a growing body of evidence suggesting that homophilic interactions between surface proteins present on neighbouring bacteria induce biofilm growth.  相似文献   

6.
Staphylococcus aureus is a human pathogen that secretes proteins that contribute to bacterial colonization. Here we describe the extracellular adherence protein (Eap) as a novel anti-inflammatory factor that inhibits host leukocyte recruitment. Due to its direct interactions with the host adhesive proteins intercellular adhesion molecule 1 (ICAM-1), fibrinogen or vitronectin, Eap disrupted beta(2)-integrin and urokinase receptor mediated leukocyte adhesion in vitro. Whereas Eap-expressing S. aureus induced a 2 3-fold lower neutrophil recruitment in bacterial peritonitis in mice as compared with an Eap-negative strain, isolated Eap prevented beta(2)-integrin-dependent neutrophil recruitment in a mouse model of acute thioglycollate-induced peritonitis. Thus, the specific interactions with ICAM-1 and extracellular matrix proteins render Eap a potent anti-inflammatory factor, which may serve as a new therapeutic substance to block leukocyte extravasation in patients with hyperinflammatory pathologies.  相似文献   

7.
The receptor function of galactosyltransferase during cellular interactions   总被引:1,自引:0,他引:1  
Summary The molecular mechanisms that underly cellular interactions during development are still poorly understood. There is reason to believe that complex glycoconjugates participate in cellular interactions by binding to specific cell surface receptors. One class of carbohydrate binding proteins that could serve as receptors during cellular interactions are the glycosyltransferases. Glycosyltransferases have been detected on a variety of cell surfaces, and evidence suggests that they may participate during cellular interactions by binding their specific carbohydrate substrates on adjacent cells or in extracellular matrix (see Refs. 1–4 for review).This review will focus on the receptor function of galactosyltransferase, in particular, during fertilization, embryonic cell adhesion and migration, limb bud morphogenesis, immune recognition and growth control. In many of these systems, the galactosyltransferase substrate has been characterized as a novel, large molecular weight glycoconjugate composed of repeating N-acetyllactosamine residues. The function of surface galactosyl-transferase during cellular interactions has been examined with genetic and biochemical probes, including the T/t-complex morphogenetic mutants, enzyme inhibitors, enzyme modifiers, and competitive substrates. Collectively, these studies suggest that in the mouse, surface galactosyltransferase is under the genetic control of the T/t-complex, and participates in multiple cellular interactions during development by binding to its specific lactosaminoglycan substrate.  相似文献   

8.
Summary. Nodulins encoding repetitive proline-rich cell wall proteins (PRPs) are induced during early interactions with rhizobia, suggesting a massive restructuring of the plant extracellular matrix during infection and nodulation. However, the proteins corresponding to these gene products have not been isolated or characterized, nor have cell wall localizations been confirmed. Posttranslational modifications, conformation, and interactions with other wall polymers are difficult to predict on the basis of only the deduced amino acid sequence of PRPs. PsENOD2 is expressed in nodule parenchyma tissue during nodule organogenesis and encodes a protein with distinctive PRP motifs that are rich in glutamate and basic amino acids. A database search for the ENOD2 signature motifs indicates that similar proteins may have a limited phylogenetic distribution, as they are presently only known from legumes. To determine the ultrastructural location of the proteins, antibodies were raised against unique motifs from the predicted ENOD2 sequence. The antibodies recognized nodule-specific proteins in pea (Pisum sativum), with a major band detected at 110 kDa, representing a subset of PRPs from nodules. The protein was detected specifically in organelles of the secretory pathway and intercellular spaces in the nodule parenchyma, but it was not abundant in primary walls. Similar proteins with an analogous distribution were detected in soybean (Glycine max). The use of polyclonal antibodies raised against signature motifs of extracellular matrix proteins thus appears to be an effective strategy to identify and isolate specific structural proteins for functional analysis. Correspondence and reprints: Delaware Biotechnology Institute, Newark, DE 19711, U.S.A.  相似文献   

9.
This study compared the secretomes (proteins exported out of the cell) of Propionibacterium freudenreichii of different origin to identify plausible adaptation factors. Phylosecretomics indicated strain‐specific variation in secretion of adhesins/invasins (SlpA, InlA), cell‐wall hydrolysing (NlpC60 peptidase, transglycosylase), protective (RpfB) and moonlighting (DnaK, GroEL, GaPDH, IDH, ENO, ClpB) enzymes and/or proteins. Detailed secretome comparison suggested that one of the cereal strains (JS14) released a tip fimbrillin (FimB) in to the extracellular milieu, which was in line with the electron microscopy and genomic analyses, indicating the lack of surface‐associated fimbrial‐like structures, predicting a mutated type‐2 fimbrial gene cluster (fimB‐fimA‐srtC2) and production of anchorless FimB. Instead, the cereal strain produced high amounts of SlpB that tentatively mediated adherent growth on hydrophilic surface and adherence to hydrophobic material. One of the dairy strains (JS22), producing non‐covalently bound surface‐proteins (LspA, ClpB, AraI) and releasing SlpA and InlA into the culture medium, was found to form clumps under physiological conditions. The JS22 strain lacked SlpB and displayed a non‐clumping and biofilm‐forming phenotype only under conditions of increased ionic strength (300 mM NaCl). However, this strain cultured under the same conditions was not adherent to hydrophobic support, which supports the contributory role of SlpB in mediating hydrophobic interactions. Thus, this study reports significant secretome variation in P. freudenreichii and suggests that strain‐specific differences in protein export, modification and protein–protein interactions have been the driving forces behind the adaptation of this bacterial species.  相似文献   

10.
Lactobacillus surface layer proteins: structure, function and applications   总被引:1,自引:0,他引:1  
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.  相似文献   

11.
Neisseria meningitidis (Nm) isolates from disease or during carriage express, on their outer membranes, one or more of a family of closely related proteins designated Opa proteins. In this study, we have examined the potential rotes of Nm Opa proteins in bacterial attachment and invasion of endothelial as well as epithelial cells and compared the influence of Opa proteins with that of Ope protein, which has been previously shown to increase bacterial interactions with eukaryotic cells. Several variants expressing different Opa proteins (A, B, D) or Opc were selected from a culture of capsule-deficient non-piliated bacteria of strain C751. Although the Opa proteins increased bacterial attachment and invasion of endothelial cells, Opc was the most effective protein in increasing bacterial interactions with these cells. In contrast, attachment to several human epithelial cells was facilitated at least as much by OpaB as Opc protein. OpaA was largely without effect whereas OpaD conferred intermediate attachment. OpaB also increased invasion of epithelial cells; more bacteria were internalized by Chang conjunctival cells compared with Hep-2 larynx carcinoma or A549 lung carcinoma cells. Monoclonal antibody reacting with OpaB inhibited bacterial interactions with the host cells. Opa-mediated interactions were also eliminated or significantly reduced in variants expressing capsule or those with sialylated lipopolysaccharide. These data are consistent with the notion that environmental factors controlling capsule and lipopolysaccharide phenotype may modulate bacterial interactions mediated by these OM proteins. In permissive microenvironments, some Opa proteins may be important in bacterial colonization and translocation in addition to Opc. The data also support the notion that Nm Opa may confer tissue tropism.  相似文献   

12.
Many pathogenic Gram-positive bacteria produce cell wall-anchored proteins that bind to components of the extracellular matrix (ECM) of the host. These bacterial MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are thought to play a critical role in infection. One group of MSCRAMMs, produced by staphylococci and streptococci, targets fibronectin (Fn, a glycoprotein found in the ECM and body fluids of vertebrates) using repeats in the C-terminal region of the bacterial protein. These bacterial Fn-binding proteins (FnBPs) mediate adhesion to host tissue and bacterial uptake into non-phagocytic host cells. Recent studies on interactions between the host and bacterial proteins at the residue-specific level and on the mechanism of host cell invasion are providing a much clearer picture of these processes.  相似文献   

13.
Snake venom metalloproteinases (SVMPs) are members of the Reprolysin family of metalloproteinases to which the ADAM (a disintegrin and metalloproteinase) proteins also belong. The disintegrin-like/cysteine-rich domains of the ADAMs have been implicated in their function. In the case of the SVMPs, we hypothesized that these domains could function to target the metalloproteinases to key extracellular matrix proteins or cell surface proteins. Initially we detected interaction of collagen XIV, a fibril-associated collagen with interrupted triple helices containing von Willebrand factor A (VWA) domains, with the PIII SVMP catrocollastatin. Next we investigated whether other VWA domain-containing matrix proteins could support the binding of PIII SVMPs. Using surface plasmon resonance, the PIII SVMP jararhagin and a recombinant cysteine-rich domain from a PIII SVMP were demonstrated to bind to collagen XIV, collagen XII, and matrilins 1, 3, and 4. Jararhagin was shown to cleave these proteins predominantly at sites localized at or near the VWA domains suggesting that it is the VWA domains to which the PIII SVMPs are binding via their cysteine-rich domain. In light of the fact that these extracellular matrix proteins function to stabilize matrix, targeting the SVMPs to these proteins followed by their specific cleavage could promote the destabilization of extracellular matrix and cell-matrix interactions and in the case of capillaries could contribute to their disruption and hemorrhage. Although there is only limited structural homology shared by the cysteine-rich domains of the PIII SVMPs and the ADAMs our results suggest an analogous function for the cysteine-rich domains in certain members of the expanded ADAM family of proteins to target them to VWA domain-containing proteins.  相似文献   

14.
Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone‐like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.  相似文献   

15.
Non-glucan attached proteins of the cell surface and extracellular matrix of Candida albicans biofilms formed on two catheter surfaces and denture acrylic were examined. The SDS-PAGE protein profiles of these proteins compared with that obtained from planktonic yeast cells and germ tubes were generally similar. This observation suggested that this class of biofilm surface proteins is not composed of a unique set of extracellular proteins or that one or a few proteins dominate the non-glucan attached proteins of biofilm. However, differences were observed in the proteins obtained from biofilm formed on one catheter surface and two proteins, Grp2p and ORF19.822p, identified by mass spectrometry following two-dimensional separation. These proteins have previously been associated with drug resistance and their presence or abundance appeared to be influenced by the surface on which the biofilm was formed.  相似文献   

16.
Flavobacterium spp. isolates have been identified in diverse biofilm structures, but the mechanism of adherence has not been elucidated. The absence of conventional biofilm-associated structures such as fimbriae, pili, and flagella suggest that surface hydrophobicity, and/or autoaggregation and coaggregation may play an important role in adherence and biofilm formation. The biofilm-forming capacity of 29 Flavobacterium johnsoniae-like isolates obtained from South African aquaculture systems was assessed using microtiter plate assays. The role of hydrophobicity [salting aggregation test (SAT) and bacterial adherence to hydrocarbons (BATH) assays], autoaggregation, and coaggregation on biofilm formation by Flavobacterium spp. was also investigated, while biofilm structure was examined using flow cells and microscopy. All isolates displayed a hydrophilic nature, but showed varying levels of adherence in microtiter assays. Significant negative correlations were observed between adherence and biofilm-forming capacity in nutrient-poor medium at 26°C and BATH hydrophobicity and motility, respectively. Isolates displayed strain-to-strain variation in their autoaggregation indices and their abilities to coaggregate with various Gram-negative and Gram-positive organisms. Microcolony and/or biofilm development were observed microscopically, and flavobacterial isolates displayed stronger biofilm structures and interaction with a Vibrio spp. isolate than with an Aeromonas hydrophila isolate. The role of extracellular polysaccharides and specific outer membrane proteins will have to be examined to reveal mechanisms of adherence and coaggregation employed by biofilm-forming F. johnsoniae-like strains.  相似文献   

17.
Attachment of Entamoeba histolytica to colonic epithelium and a variety of other target cells is mediated by a galactosc/N-acetyl D-galactosamine (Gal/GalNAc) inhibitable adhesin. Seven monoclonal antibodies specific for nonoverlapping epitopes of the 170 kDa subunit have been shown to have distinct effects on adherence. Four of these monoclonal antibodies inhibit or have no effect on amebic adherence while two others enhance amebic adherence. The epitopes recognized by these seven monoclonal antibodies have been mapped to the extracellular cysteine rich region of the 170 kDa subunit. The conformational nature of the epitopes was examined by testing monoclonal antibody reactivity with isolated regions of the 170 kDa subunit expressed as fusion proteins in E. coli and also with denatured native adhesin. These analyses suggested that three of monoclonal antibodies recognized conformational epitopes while the remaining four recognized linear epitopes. The mapping of these monoclonal antibodies have identified functionally important regions of the Gal/GalNAc adhesin and have also shown that recombinant Gal/GalNAc adhesin, when expressed in E. coli, retained at least some of its native conformation.  相似文献   

18.
Chondroitin sulfate and heparan sulfate proteoglycans are major components of the cell surface and extracellular matrix in the brain. Both chondroitin sulfate and heparan sulfate are unbranched highly sulfated polysaccharides composed of repeating disaccharide units of glucuronic acid and N-acetylgalactosamine, and glucuronic acid and N-acetylglucosamine, respectively. During their biosynthesis in the Golgi apparatus, these glycosaminoglycans are highly modified by sulfation and C5 epimerization of glucuronic acid, leading to diverse heterogeneity in structure. Their structures are strictly regulated in a cell type-specific manner during development partly by the expression control of various glycosaminoglycan-modifying enzymes. It has been considered that specific combinations of glycosaminoglycan-modifying enzymes generate specific functional microdomains in the glycosaminoglycan chains, which bind selectively with various growth factors, morphogens, axon guidance molecules and extracellular matrix proteins. Recent studies have begun to reveal that the molecular interactions mediated by such glycosaminoglycan microdomains play critical roles in the various signaling pathways essential for the development of the brain.  相似文献   

19.
Helicobacter pylori adhesins: review and perspectives   总被引:7,自引:0,他引:7  
Evans DJ  Evans DG 《Helicobacter》2000,5(4):183-195
It is highly unlikely that chronic infection with H. pylori could occur in the absence of adhesin–host cell interactions. Also, there is no evidence that any of the serious outcomes of H. pylori infection such as gastric and duodenal ulcers, gastric cancer or mucosa‐associated lymphoid tissue (MALT) lymphoma could occur without prior colonization of the gastric epithelium mediated by H. pylori adhesins. H. pylori is highly adaptable, as evidenced by the fact that it can occupy a single host for decades. An important facet of this adaptability is its ability to physically interact with various types of host cells and also with host mucins and extracellular matrix proteins using a number of different adhesins displaying a variety of unique receptor specificities. Thus it is highly unlikely that any one particular H. pylori adhesin will ever be proven responsible for a particular outcome such as duodenal ulcer, MALT lymphoma, or adenocarcinoma. Also, while the search for additional H. pylori adhesins should and certainly will continue, we suggest that the scope of this effort should be expanded to include investigations into the patterns of expression and interaction between individual outer membrane proteins. Which of the numerous H. pylori outer membrane proteins (OMPs) actually function as adhesins (i.e., have receptor‐binding sites) and which OMPs are simply necessary for optimal display of the adhesive OMPs? There are many other important questions about H. pylori adhesins waiting to be answered. For example, which adhesins are responsible for loose adherence to host cells and which adhesins are responsible for intimate, or membrane‐to‐membrane, adherence, and do these adhesins normally work in concert or in a sequential fashion? Also, is a specific type of adhesin necessary for type IV protein translocation into host cells and, if so, is adhesin expression coregulated with the effector protein export?  相似文献   

20.
Subunit oligomerization of many proteins is mediated by α-helical coiled-coil domains. 3,4-Hydrophobic heptad repeat sequences, the characteristic feature of the coiled-coil protein folding motif, have been found in a wide variety of gene products including cytoskeletal, nuclear, muscle, cell surface, extracellular, plasma, bacterial, and viral proteins. Whereas the majority of coiled-coil structures is represented by intracellular α-helical bundles that contain two polypeptide chains, examples of extracellular coiled-coil proteins are fewer in number. Most proteins located in the extracellular space form three-stranded α-helical assemblies. Recently, five-stranded coiled coils have been identified in thrombospondins 3 and 4 in cartilage oligomeric matrix protein, and the formation of a heterotetramer has been observed in in vitro studies with the recombinant asialoglycoprotein receptor oligomerization domain. Coiled-coil domains in laminins and probably also in tenascins and thrombospondins are responsible for the formation of tissue-specific isoforms by selective oligomerization of different polypeptide chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号