首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The human adeno-associated virus (AAV) has generated much enthusiasm as a transfer vector for human gene therapy. Although clinical gene therapy trials have been initiated using AAV vectors, much remains to be learned regarding the basic mechanisms of virus replication, gene expression, and virion assembly. AAV encodes four nonstructural, or replication (Rep), proteins. The Rep78 and Rep68 proteins regulate viral DNA replication, chromosomal integration, and gene expression. The Rep52 and Rep40 proteins mediate virus assembly. To better understand Rep protein function, we have expressed the Rep40 protein in Escherichia coli and purified it to near homogeneity. Like the other Rep proteins, Rep40 possesses helicase and ATPase activity. ATP is the best substrate, and Mg2+ is the most efficient divalent metal ion for helicase activity. A Lys to His mutation in the purine nucleotide-binding site results in a protein that inhibits helicase activity in a dominant negative manner. Rep40 unwinds double-stranded DNA containing a 3' single-stranded end, or blunt end, unlike the Rep68 and Rep52 enzymes, which have a strict requirement for DNA duplexes containing a 3' single-stranded end. Values for KATP in the ATPase assay are 1.1 +/- 0.2 mM and 1.2 +/- 0.2 mM in the absence and presence, respectively, of single-stranded DNA. Values for Vmax are 220 +/- 10 and 1,500 +/- 90 nmol/min/mg in the absence and presence, respectively, of single-stranded DNA. These studies provide the first enzymatic characterization of the AAV Rep40 protein and elucidate important functional differences between the AAV helicases.  相似文献   

2.
The adeno-associated virus (AAV) genome encodes four Rep proteins, all of which contain an SF3 helicase domain. The larger Rep proteins, Rep78 and Rep68, are required for viral replication, whereas Rep40 and Rep52 are needed to package AAV genomes into preformed capsids; these smaller proteins are missing the site-specific DNA-binding and endonuclease domain found in Rep68/78. Other viral SF3 helicases, such as the simian virus 40 large T antigen and the papillomavirus E1 protein, are active as hexameric assemblies. However, Rep40 and Rep52 have not been observed to form stable oligomers on their own or with DNA, suggesting that important determinants of helicase multimerization lie outside the helicase domain. Here, we report that when the 23-residue linker that connects the endonuclease and helicase domains is appended to the adeno-associated virus type 5 (AAV5) helicase domain, the resulting protein forms discrete complexes on DNA consistent with single or double hexamers. The formation of these complexes does not require the Rep binding site sequence, nor is it nucleotide dependent. These complexes have stimulated ATPase and helicase activities relative to the helicase domain alone, indicating that they are catalytically relevant, a result supported by negative-stain electron microscopy images of hexameric rings. Similarly, the addition of the linker region to the AAV5 Rep endonuclease domain also confers on it the ability to bind and multimerize on nonspecific double-stranded DNA. We conclude that the linker is likely a key contributor to Rep68/78 DNA-dependent oligomerization and may play an important role in mediating Rep68/78's conversion from site-specific DNA binding to nonspecific DNA unwinding.  相似文献   

3.
We report here the crystal structure of an SF3 DNA helicase, Rep40, from adeno-associated virus 2 (AAV2). We show that AAV2 Rep40 is structurally more similar to the AAA(+) class of cellular proteins than to DNA helicases from other superfamilies. The structure delineates the expected Walker A and B motifs, but also reveals an unexpected "arginine finger" that directly implies the requirement of Rep40 oligomerization for ATP hydrolysis and helicase activity. Further, the Rep40 AAA(+) domain is novel in that it is unimodular as opposed to bimodular. Altogether, the structural connection to AAA(+) proteins defines the general architecture of SF3 DNA helicases, a family that includes simian virus 40 (SV40) T antigen, as well as provides a conceptual framework for understanding the role of Rep proteins during AAV DNA replication, packaging, and site-specific integration.  相似文献   

4.
E. coli Rep protein is a 3' to 5' SF1 superfamily DNA helicase which is monomeric in the absence of DNA, but can dimerize upon binding either single-stranded or duplex DNA. A variety of biochemical studies have led to proposals that Rep dimerization is important for its helicase activity; however, recent structural studies of Bacillus stearothermophilus PcrA have led to suggestions that SF1 helicases, such as E. coli Rep and E. coli UvrD, function as monomeric helicases. We have examined the question of whether Rep oligomerization is important for its DNA helicase activity using pre-steady state stopped-flow and chemical quenched-flow kinetic studies of Rep-catalyzed DNA unwinding. The results from four independent experiments demonstrate that Rep oligomerization is required for initiation of DNA helicase activity in vitro. No DNA unwinding is observed when only a Rep monomer is bound to the DNA substrate, even when fluorescent DNA substrates are used that can detect partial unwinding of the first few base-pairs at the ss-ds-DNA junction. In fact, under these conditions, ATP hydrolysis causes dissociation of the Rep monomer from the DNA, rather than DNA unwinding. These studies demonstrate that wild-type Rep monomers are unable to initiate DNA unwinding in vitro, and that oligomerization is required.  相似文献   

5.
Clérot D  Bernardi F 《Journal of virology》2006,80(22):11322-11330
The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3' overhang and 3'-to-5' polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein.  相似文献   

6.
Three helicase structures have been determined recently: that of the DNA helicase PcrA, that of the hepatitis C virus RNA helicase, and that of the Escherichia coli DNA helicase Rep. PcrA and Rep belong to the same super-family of helicases (SF1) and are structurally very similar. In contrast, the HCV helicase belongs to a different super-family of helicases, SF2, and shows little sequence homology with the PcrA/Rep helicases. Yet, the HCV helicase is structurally similar to Rep/PcrA, suggesting preservation of structural scaffolds and relationships between helicase motifs across these two super-families. The comparison study presented here also reveals the existence of a new helicase motif in the SF1 family of helicases.  相似文献   

7.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA) fully restores the unwinding activity of BLM and WRN on vinylphosphonate-containing substrates while the heterologous single-stranded DNA binding protein from Escherichia coli (SSB) restores the activity only partially. Both RPA and SSB fail to restore the unwinding activity of the SF1 PcrA helicase on modified substrates, implying specific interactions of RPA with the BLM and WRN helicases. Our data highlight subtle differences between SF1 and SF2 helicases and suggest that although RecQ helicases belong to the SF2 family, they are mechanistically more similar to the SF1 PcrA helicase than to other SF2 helicases that are not affected by vinylphosphonate modifications.  相似文献   

8.
The Rep68 and Rep78 proteins (Rep68/78) of adeno-associated virus type 2 (AAV) are critical for AAV replication and site-specific integration. They bind specifically to the AAV inverted terminal repeats (ITRs) and possess ATPase, helicase, and strand-specific/site-specific endonuclease activities. In the present study, we further characterized the AAV Rep68/78 helicase, ATPase, and endonuclease activities by using a maltose binding protein-Rep68 fusion (MBP-Rep68Delta) produced in Escherichia coli cells and Rep78 produced in vitro in a rabbit reticulocyte lysate system. We found that the minimal length of single-stranded DNA capable of stimulating the ATPase activity of MBP-Rep68Delta is 100 to 200 bases. The degree of stimulation correlated positively with the length of single-stranded DNA added to the reaction mixture. We then determined the ATP concentration needed for optimal MBP-Rep68Delta helicase activity and showed that the helicase is active over a wide range of ATP concentrations. We determined the directionality of MBP-Rep68Delta helicase activity and found that it appears to move in a 3' to 5' direction, which is consistent with a model in which AAV Rep68/78 participates in AAV DNA replication by unwinding DNA ahead of a cellular DNA polymerase. In this report, we also demonstrate that single-stranded DNA is capable of inhibiting the MBP-Rep68Delta or Rep78 endonuclease activity greater than 10-fold. In addition, we show that removal of the secondary Rep68/78 binding site, which is found only in the hairpin form of the AAV ITR, causes a three- to eightfold reduction in the ability of the ITR to be used as a substrate for the Rep78 or MBP-Rep68Delta endonuclease activity. This suggests that contact between Rep68/78 and this secondary element may play an important role in the Rep-mediated endonuclease activity.  相似文献   

9.
The adeno-associated virus (AAV) nonstructural proteins Rep68 and Rep78 are site-specific DNA binding proteins, ATP-dependent site-specific endonucleases, helicases, and ATPases. These biochemical activities are required for viral DNA replication and control of viral gene expression. In this study, we characterized the biochemical properties of the helicase and ATPase activities of homogeneously pure Rep68. The enzyme exists as a monomer in solution at the concentrations used in this study (<380 nM), as judged by its mobility in sucrose density gradients. Using a primed single-stranded (ss) circular M13 substrate, the helicase activity had an optimum pH of 7 to 7.5, an optimum temperature of 45°C, and an optimal divalent-cation concentration of 5 mM MgCl2. Several nucleoside triphosphates could serve as cofactors for Rep68 helicase activity, and the order of preference was ATP = GTP > CTP = dATP > UTP > dGTP. The Km values for ATP in both the DNA helicase reaction and the site-specific trs endonuclease reaction were essentially the same, approximately 180 μM. Both reactions were sigmoidal with respect to ATP concentration, suggesting that a dimer or higher-order multimer of Rep68 is necessary for both DNA helicase activity and terminal resolution site (trs) nicking activity. Furthermore, when the enzyme itself was titrated in the trs endonuclease and ATPase reactions, both activities were second order with respect to enzyme concentration. This suggests that a dimer of Rep68 is the active form for both the ATPase and nicking activities. In contrast, DNA helicase activity was linear with respect to enzyme concentration. When bound to ssDNA, the enzyme unwound the DNA in the 3′-to-5′ direction. DNA unwinding occurred at a rate of approximately 345 bp per min per monomeric enzyme molecule. The ATP turnover rate was approximately 30 to 50 ATP molecules per min per enzyme molecule. Surprisingly, the presence of DNA was not required for ATPase activity. We estimated that Rep translocates processively for more than 1,300 bases before dissociating from its substrate in the absence of any accessory proteins. DNA helicase activity was not significantly stimulated by substrates that have the structure of a replication fork and contain either a 5′ or 3′ tail. Rep68 binds only to ssDNA, as judged by inhibition of the DNA helicase reaction with ss or double-stranded (ds) DNA. Consistent with this observation, no helicase activity was detected on blunt-ended ds oligonucleotide substrates unless they also contained an ss 3′ tail. However, if a blunt-ended ds oligonucleotide contained the 22-bp Rep binding element sequence, Rep68 was capable of unwinding the substrate. This means that Rep68 can function both as a conventional helicase for strand displacement synthesis and as a terminal-repeat-unwinding protein which catalyzes the conversion of a duplex end to a hairpin primer. Thus, the properties of the Rep DNA helicase activity suggest that Rep is involved in all three of the key steps in AAV DNA replication: terminal resolution, reinitiation, and strand displacement.  相似文献   

10.
11.
Although DNA helicases play important roles in the processing of DNA, little is known about the effects of DNA-interacting ligands on these helicases. Therefore, the effects of a wide variety of DNA-binding ligands on the unwinding and ATPase reactions catalyzed by Escherichia coli DNA helicase II were examined. DNA minor groove binders and simple DNA intercalators did not inhibit helicase II. However, DNA intercalators, such as mitoxantrone and nogalamycin, which position functionalities in the major groove upon binding duplex DNA, were potent inhibitors of helicase II. To determine the mechanism by which mitoxantrone inhibited helicase II, the unwinding and DNA-dependent ATPase activities of helicase II were measured using a spectrum of double- and single-stranded DNA substrates. Using either a 71-base pair (bp) M13mp7 partially duplexed DNA substrate or a 245-bp bluntended, fully duplexed DNA substrate, the apparent Ki value for inhibition by mitoxantrone of both the unwinding and ATPase reactions was approximately 1 microM for both substrates, suggesting that the mechanism of inhibition of helicase II by mitoxantrone is the same for both substrates and requires the presence of double-stranded structure. To strengthen this conclusion, the ability of mitoxantrone to inhibit the DNA-dependent ATPase activity of helicase II was determined using two single-stranded substrates, poly(dT) and the 245-bp substrate after heat denaturation. Using either substrate, mitoxantrone inhibited the ATPase activity of helicase II far less effectively. Thus, these results indicate that the intercalation of mitoxantrone into double-stranded DNA, with accompanying placement of functionalities in the major groove, generates a complex that impedes helicase II, resulting in both inhibition of ATP hydrolysis and unwinding activity. Furthermore, we report here that DNA-binding ligands inhibit the unwinding activity of helicases I and IV and Rep protein from E. coli, demonstrating that the inhibition observed for helicase II is not unique to this enzyme.  相似文献   

12.
Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag) and bovine papillomavirus (BPV) E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID) and an AAA+ motor domain. The AAA+ motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA+ domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration.  相似文献   

13.
The adeno-associated virus type 2 (AAV) Rep68 protein produced in Escherichia coli as a fusion protein with maltose-binding protein (MBP-Rep68 delta) has previously been shown to possess DNA-DNA helicase activity, as does the purified wild-type Rep68. In the present study, we demonstrate that MBP-Rep68 delta also catalyzes the unwinding of a DNA-RNA hybrid. MBP-Rep68 delta-mediated DNA-RNA helicase activity required ATP hydrolysis and the presence of Mg2+ ions and was inhibited by high ionic strength. The efficiency of the DNA-RNA helicase activity of MBP-Rep68 delta was comparable to its DNA-DNA helicase activity. However, MBP-Rep68 delta lacked the ability to unwind a blunt-ended DNA-RNA substrate and RNA-RNA duplexes. We have also demonstrated that MBP-Rep68 delta has ATPase activity which is enhanced by the presence of single-stranded DNA but not by RNA. The MBP-Rep68 delta NTP mutant protein, which has a lysine-to-histidine substitution at amino acid 340 in the putative nucleoside triphosphate-binding site of Rep68, not only lacks DNA-RNA helicase and ATPase activities but also inhibits the helicase activity of MBP-Rep68 delta. DNA-RNA helicase activity of Rep proteins might play a pivotal role in the regulation of AAV gene expression by AAV Rep proteins.  相似文献   

14.
The domain structures of the Escherichia coli Rep and Helicase II proteins and their ligand-dependent conformational changes have been examined by monitoring the sensitivity of these helicases to proteolysis by trypsin and chymotrypsin. Limited treatment of unliganded Rep protein (73 kDa) with trypsin results in cleavage at a single site in its carboxyl-terminal region, producing a 68-kDa polypeptide which is stabilized in the presence of ATP, ADP, or adenosine 5'-O-thiotriphosphate) (ATP gamma S). The purified 68-kDa Rep tryptic polypeptide retains single-stranded (ss) DNA binding, DNA unwinding (helicase), and full ATPase activities. When bound to ssDNA, the Rep protein can be cleaved by trypsin at an additional site in its carboxyl-terminal region, producing a 58-kDa polypeptide that also retains ssDNA binding and ATPase activities. This 58-kDa Rep tryptic polypeptide can also be produced by further tryptic treatment of the 68-kDa Rep tryptic polypeptide when the latter is bound to ssDNA. This 58-kDa polypeptide displays a lower affinity for ssDNA indicating that the 10-kDa carboxyl-terminal peptide facilitates Rep protein binding to ssDNA. The 58-kDa Rep tryptic polypeptide is also stabilized in the presence of nucleotides. Based on these and previous studies that showed that the 68-kDa Rep tryptic polypeptide cannot support DNA replication in a system that is dependent upon the phi X174 cis-A protein (Arai, N. & Kornberg, A. (1981) J. Biol. Chem. 256, 5294-5298), we conclude that the carboxyl-terminal end (approximately 5 kDa) of the Rep protein is not required for its helicase or ATPase activities. However, we suggest that this region of the Rep protein is important for its interactions with the phi X174 cis-A protein. Limited treatment of unliganded Helicase II protein (82 kDa) with chymotrypsin results in cleavage after Tyr254, producing a 29-kDa amino-terminal polypeptide and a 53-kDa carboxyl-terminal polypeptide, which remain associated under nondenaturing conditions. This chymotrypsin cleavage reduces the ssDNA binding activity and eliminates the ssDNA-dependent ATPase and helicase activities of the Helicase II protein. The binding of ATP, ADP, ATP gamma S, and/or DNA to Helicase II protein results in protection of this site (Tyr254) from cleavage by chymotrypsin. Limited treatment of Helicase II protein with trypsin results in cleavage near its carboxyl-terminal end producing two polypeptides with apparent Mr = 72,000, in a manner similar to that observed with the Rep protein; these polypeptides are also stabilized by binding ATP or single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
UL9 is a multifunctional protein essential for herpes simplex virus type 1 (HSV-1) replication in vivo. UL9 is a member of the superfamily II helicases and exhibits helicase and origin-binding activities. It is thought that UL9 binds the origin of replication and unwinds it in the presence of ATP and the HSV-1 single-stranded DNA (ssDNA)-binding protein. We have previously characterized the biochemical properties of mutants in all helicase motifs except for motif Ia (B. Marintcheva and S. Weller, J. Biol. Chem. 276:6605-6615, 2001). Structural information for other superfamily I and II helicases indicates that motif Ia is involved in ssDNA binding. By analogy, we hypothesized that UL9 motif Ia is important for the ssDNA-binding function of the protein. On the basis of sequence conservation between several UL9 homologs within the Herpesviridae family and distant homology with helicases whose structures have been solved, we designed specific mutations in motif Ia and analyzed them genetically and biochemically. Mutant proteins with residues predicted to be involved in ssDNA binding (R112A and R113A/F115A) exhibited wild-type levels of intrinsic ATPase activity and moderate to severe defects in ssDNA-stimulated ATPase activity and ssDNA binding. The S110T mutation targets a residue not predicted to contact ssDNA directly. The mutant protein with this mutation exhibited wild-type levels of intrinsic ATPase activity and near wild-type levels of ssDNA-stimulated ATPase activity and ssDNA binding. All mutant proteins lack helicase activity but were able to dimerize and bind the HSV-1 origin of replication as well as wild-type UL9. Our results indicate that residues from motif Ia contribute to the ssDNA-binding and helicase activities of UL9 and are essential for viral growth. This work represents the successful application of an approach based on a combination of bioinformatics and structural information from related proteins to deduce valuable information about a protein of interest.  相似文献   

16.
Activation of the ATPase activity of adeno-associated virus Rep68 and Rep78   总被引:1,自引:0,他引:1  
Rep68 and Rep78 DNA helicases, encoded by adeno-associated virus 2 (AAV2), are required for replication of AAV viral DNA in infected cells. They bind to imperfect palindromic elements in the inverted terminal repeat structures at the 3'- and 5'-ends of virion DNA. The ATPase activity of Rep68 and Rep78 is stimulated up to 10-fold by DNA containing the target sequence derived from the inverted terminal repeat; nontarget DNA stimulates ATPase activity at 50-fold higher concentrations. Activation of ATPase activity of Rep68 by DNA is cooperative with a Hill coefficient of 1.8 +/- 0.2. When examined by gel filtration at 0.5 M NaCl in the absence of DNA, Rep68 self-associates in a concentration-dependent manner. In the presence of DNA containing the binding element, Rep68 (and Rep78) forms protein-DNA complexes that exhibit concentration-dependent self-association in gel filtration analysis. The ATPase activity of the isolated Rep68-DNA and Rep78-DNA complexes is not activated by additional target DNA. Results of sedimentation velocity experiments in the presence of saturating target DNA are consistent with Rep68 forming a hexamer of the protein with two copies of the DNA element. Activation of the ATPase activity of Rep68 is associated with the formation of a protein-DNA oligomer.  相似文献   

17.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

18.
Motif III is one of the seven protein motifs that are characteristic of superfamily I helicases. To investigate its role in the helicase mechanism we have introduced a variety of mutations at three of the most conserved amino acid residues (Q254, W259 and R260). Biochemical characterisation of the resulting proteins shows that mutation of motif III affects both ATP hydrolysis and single-stranded DNA binding. We propose that amino acid residue Q254 acts as a gamma-phosphate sensor at the nucleotide binding pocket transmitting conformational changes to the DNA binding site, since the nature of the charge on this residue appears to control the degree of coupling between ATPase and helicase activities. Residues W259 and R260 both participate in direct DNA binding interactions that are critical for helicase activity.  相似文献   

19.
Helicases contain conserved motifs involved in ATP/magnesium/nucleic acid binding and in the mechanisms coupling nucleotide hydrolysis to duplex unwinding. None of these motifs are located at the adenine-binding pocket of the protein. We show here that the superfamily I helicase, helicase IV from Escherichia coli, utilizes a conserved glutamine and conserved aromatic residue to interact with ATP. Other superfamily I helicases such as, UvrD/Rep/PcrA also possess these residues but in addition they interact with adenine via a conserved arginine, which is replaced by a serine in helicase IV. Mutation of this serine residue in helicase IV into histidine or methionine leads to proteins with unaffected ATPase and DNA-binding activities but with low helicase activity. This suggests that residues located at the adenine-binding pocket, in addition to be involved in ATP-binding, are important for efficient coupling between ATP hydrolysis and DNA unwinding.  相似文献   

20.
The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDDelta107C (deletion of the last 107 C-terminal amino acids), UvrDDelta102C, and UvrDDelta40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDDelta107C and UvrDDelta102C failed to substitute for the wild-type protein in methyl-directed mismatch repair and nucleotide excision repair. UvrDDelta40C protein fully complemented the loss of helicase II in both repair pathways. UvrDDelta102C and UvrDDelta40C were purified to apparent homogeneity and characterized biochemically. UvrDDelta102C was unable to bind single-stranded DNA and exhibited a greatly reduced single-stranded DNA-stimulated ATPase activity in comparison to the wild-type protein (kcat = 0.01% of the wild-type level). UvrDDelta40C was slightly defective for DNA binding and was essentially indistinguishable from wild-type UvrD when single-stranded DNA-stimulated ATP hydrolysis and helicase activities were measured. These results suggest a role for a region near the C terminus of helicase II in binding to single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号