首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this work were to study cyanobacterial isolates resembling the genus Hydrocoryne using a combination of morphology and phylogeny of 16S rRNA and nifH sequences and to investigate genes involved in cyanotoxin and protease inhibitor production. Four new cyanobacterial strains, isolated from biofilm samples collected from King George Island, Antarctica, were studied. In terms of morphology, these new strains share traits similar to true Anabaena morphotypes (benthic ones), whereas phylogenetic analysis of their 16S rRNA gene sequences grouped them with the sequence of the type species Hydrocoryne spongiosa (H. Schwabe ex Bornet and Flahault 1886–1888), but not with sequences of the type species from the genus Anabaena. This cluster is the sister group of Anabaena morphotypes isolated only from the Gulf of Finland. In addition, this cluster is related to two other clusters formed by sequences of Anabaena isolated from different sites. Partial nifH genes were sequenced from two strains and the phylogenetic tree revealed that the Antarctic nifH sequences clustered with sequences from Anabaena. Furthermore, two strains were tested, using PCR with specific primers, for the presence of genes involved in cyanotoxins (microcystin and saxitoxin) and protease inhibitor (aeruginosin, and cyanopeptolin). Only cyanopeptolin was amplified using PCR. These four Hydrocoryne strains are the first to be isolated and sequenced from Antarctica, which improves our knowledge on this poorly defined cyanobacterial genus.  相似文献   

2.
3.
A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.  相似文献   

4.
Partial gyrB sequences (>1 kb) were obtained from 34 type strains of the genus Amycolatopsis. Phylogenetic trees were constructed to determine the effectiveness of using this gene to predict taxonomic relationships within the genus. The use of gyrB sequence analysis as an alternative to DNA–DNA hybridization was also assessed for distinguishing closely related species. The gyrB based phylogeny mostly confirmed the conventional 16S rRNA gene-based phylogeny and thus provides additional support for certain of these 16S rRNA gene-based phylogenetic groupings. Although pairwise gyrB sequence similarity cannot be used to predict the DNA relatedness between type strains, the gyrB genetic distance can be used as a means to assess quickly whether an isolate is likely to represent a new species in the genus Amycolatopsis. In particular a genetic distance of >0.02 between two Amycolatopsis strains (based on a 315 bp variable region of the gyrB gene) is proposed to provide a good indication that they belong to different species (and that polyphasic taxonomic characterization of the unknown strain is worth undertaking). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the gyrB gene sequences obtained in this study are shown in Table 1.  相似文献   

5.
Li  Renhui  Carmichael  Wayne W.  Liu  Yongding  Watanabe  Makoto M. 《Hydrobiologia》2000,438(1-3):99-105
The taxonomy of Aphanizomenon flos-aquae strain NH-5, a producer of cyanotoxins, was re-evaluated by comparison with six other Aphanizomenon strains using morphological characteristics and 16S rRNA gene sequences. Strain NH-5 was concluded to be improperly identified as Aph. flos-aquae based upon (1) lack of bundle formation in the trichomes, (2) location of akinetes next to heterocytes, (3) lower similarities (less than 97.5%) in the 16S rRNA gene sequences relative to Aph. flos-aquae strains, and (4) comparison within a phylogenetic tree constructed from 16S rRNA gene sequences. The Aphanizomenon strains investigated in this study are classified to four morphological groups as described by the classical taxonomy of Komárek & Kovácik (1989). This classification was supported from the phylogenetic results of 16S rRNA gene sequences. This study also discusses the generic boundaries between Aphanizomenon and Anabaena.  相似文献   

6.
Twenty strains of flattened amoebae including 17 isolated from fish were characterised morphologically both at light microscopical and ultrastructural levels and assigned to either the genus Vannella Bovee, 1965 or the genus Platyamoeba Page, 1969. Sequence-based phylogenetic analyses of SSU rRNA genes from a data set representing a total of 29 strains of flattened amoebae strongly indicated that morphological features discriminating between these genera do not reflect phylogenetic relationships of representative strains. Contrary to a previous study, strains of this expanded assemblage formed clusters that did not reflect their environmental origin. Monophyletic groups were of mixed origins and contained freshwater as well as marine strains of both genera isolated in geographically distant localities of various continents. These findings were supported by results of phylogenetic analyses of selected strains based on ITS sequences. However, topologies of acquired ITS trees were not congruent with results inferred from SSU rRNA analyses.  相似文献   

7.
Occurrences of rare cyanobacteria Anabaena reniformis Lemmerm. and Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek were recently detected at several localities in the Czech Republic. Two monoclonal strains of An. reniformis and one strain of Aph. aphanizomenoides were isolated from distant localities and different sampling years. They were characterized by a combination of morphological, genetic, and biochemical approaches. For the first time, partial 16S rRNA gene sequences were obtained for these morphospecies. Based on this gene, all of these strains clustered separately from other planktonic Anabaena and Aphanizomenon strains. They appeared in a cluster with Cylindrospermopsis Seenaya et Subba Raju and Raphidiopsis F. E. Fritsch et M. F. Rich, clustered closely together with two An. kisseleviana Elenkin strains available from GenBank. A new generic entity was defined (Sphaerospermum gen. nov., with the type species S. reniforme, based on the traditional species An. reniformis). These results contribute significantly to the knowledge base about genetic heterogeneity among planktonic Anabaena–like and Aphanizomenon–like morphospecies. Accordingly, the subgenus Dolichospermum, previously proposed for the group of planktonic Anabaena, should be revaluated. Secondary metabolite profiles of the An. reniformis and Aph. aphanizomenoides strains differed considerably from 17 other planktonic Anabaena strains of eight morphospecies isolated from Czech water bodies. Production of puwainaphycin A was found in both of the An. reniformis strains. Despite the relatively short phylogenetic distance from Cylidrospermopsis, the production of cylindrospermopsin was not detected in any of our strains.  相似文献   

8.
The “Vibrio fischeri species group” recently was reclassified as a new genus, Aliivibrio, comprising four species, Aliivibrio fischeri, Aliivibrio logei, Aliivibrio salmonicida, and Aliivibrio wodanis. Only limited phylogenetic analysis of strains within Aliivibrio has been carried out, however, and taxonomic ambiguity is evident within this group, especially for phenotypically unusual strains and certain strains isolated from bioluminescent symbioses. Therefore, to examine in depth the evolutionary relationships within Aliivibrio and redefine the host affiliations of symbiotic species, we examined several previously identified and newly isolated strains using phylogenetic analysis based on multiple independent loci, gapA, gyrB, pyrH, recA, rpoA, the luxABE region, and the 16S rRNA gene. The analysis resolved Aliivibrio as distinct from Vibrio, Photobacterium, and other genera of Vibrionaceae, and resolved A. fischeri, A. salmonicida, A. logei, and A. wodanis as distinct, well-supported clades. However, it also revealed that several previously reported strains are incorrectly identified and that substantial unrecognized diversity exists in this genus. Specifically, strain ATCC 33715 (Y-1) and several other strains having a yellow-shifted luminescence were not members of A. fischeri. Furthermore, no strain previously identified as A. logei grouped with the type strain (ATCC 29985T), and no bona-fide strain of A. logei was identified as a bioluminescent symbiont. Several additional strains identified previously as A. logei group instead with the type strain of A. wodanis (ATCC BAA-104T), or are members of a new clade. Two strongly supported clades were evident within A. fischeri, a phylogenetic structure that might reflect differences in the host species or differences in the ecological incidence of strains. The results of this study highlight the importance of basing taxonomic conclusions on examination of type strains.  相似文献   

9.
A total of 106 actinobacteria associated with the marine sponge Hymeniacidon perleve collected from the Yellow Sea, China were isolated using eight different media. The number of species and genera of actinobacteria recovered from the different media varied significantly, underlining the importance of optimizing the isolation conditions. The phylogenetic diversity of the actinobacteria isolates was assessed using 16S rRNA gene amplification–restriction fragment length polymorphism (RFLP) analysis of the 106 strains with different morphologies. The RFLP fingerprinting of selected strains by HhaI-digestion of the 16S rRNA genes resulted in 11 different patterns. The HhaI-RFLP analysis gave good resolution for the identification of the actinobacteria isolates at the genus level. A phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates belonged to seven genera of culturable actinobacteria including Actinoalloteichus, Micromonospora, Nocardia, Nocardiopsis, Pseudonocardia, Rhodococcus, and Streptomyces. The dominant genus was Streptomyces, which represented 74% of the isolates. Three of the strains identified are candidates for new species.  相似文献   

10.
Our aim was to investigate the capability of each of three genes, 16S rRNA, gyrB and aroE, to discriminate, first, among Bacillus thuringiensis H serotypes; second, among B. thuringiensis serovars from the same H serotype; and third, among B. thuringiensis strains from the same serovar. The 16S rRNA, gyrB and aroE genes were amplified from 21 B. thuringiensis H serotypes and their nucleotide sequences determined. Additional strains from four B. cereus sensu lato species were included for comparison purposes. These sequences were pair-wise compared and phylogenetic relationships were revealed. Each of the three genes under study could discriminate among B. thuringiensis H serotypes. The gyrB and aroE genes showed a discriminatory power among B. thuringiensis H serotypes up to nine fold greater than that of the 16S rRNA gene. The gyrB gene was retained for subsequent analyses to discriminate B. thuringiensis serovars from the same H serotype and to discriminate strains from same serovar. A total of 42 B. thuringiensis strains, which encompassed 25 serovars from 12 H serotypes, were analyzed. The gyrB gene nucleotide sequences were different enough as to be sufficient to discriminate among B. thuringiensis serovars from the same H serotype and among B. thuringiensis strains from the same serovar. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
In this study, 30 strains of filamentous, non-heterocystous cyanobacteria from different habitats and different geographical regions assigned to diverse oscillatorian genera but here collectively referred to as members of the Phormidium group have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, phycoerythrin content, and complementary chromatic adaptation. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The sequences were located on multiple branches of the inferred cyanobacterial 16S rRNA tree. For some, but not all, strains with identical 16S rDNA sequences, a higher level of discrimination was achieved by analyses of the less conserved ITS sequences. As shown for other cyanobacteria, no correlation was found between position of the strains in the phylogenetic tree and their geographic origin. Genetically similar strains originated from distant sites while other strains isolated from the same sampling site were in different phylogenetic clusters. Also the presence of phycoerythrin was not correlated with the strains’ position in the phylogenetic trees. In contrast, there was some correlation among inferred phylogenetic relationship, original environmental habitat, and morphology. Closely related strains came from similar ecosystems and shared the same morphological and ultrastructural features. Nevertheless, structural properties are insufficient in themselves for identification at the genus or species level since some phylogenetically distant members also showed similar morphological traits. Our results reconfirm that the Phormidium group is not phylogenetically coherent and requires revision.  相似文献   

12.
Intra-specific diversity of 200 Aureobasidium pullulans strains isolated from different sources and their relatives Kabatiella lini CBS 125.21 T and Hormonema prunorum CBS 933.72 T were studied by assessment of macromorphological, and physiological tests, sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique (SDS–PAGE) of whole-cell proteins as well as enterobacterial repetitive intergenic consensus (ERIC)-, repetitive extragenic palindromic (REP)- and BOX-PCR techniques (collectively known as rep-PCR). Rep-PCR is an efficient procedure for discrimination of A. pullulans in terms of simplicity and rapidity. RFLP-PCR technique was applied for the identification of A. pullulans isolates and distinction from related species. This technique was insufficient for investigation of intra-specific diversity. The tested strains of A. pullulans could be divided into two groups based on their macromorphological, protein patterns obtained after SDS-PAGE as well as rep-PCR patterns. The first group of strains shared similar characteristics and was very different from the second one, designated as “complex group”, consisting of strains with very little similarities within the group. Phenetic analysis of ERIC banding patterns failed to group the isolates on the basis of their substrate or geographical origin. Using 18S rDNA gene sequence analysis of selected isolates, three strains: HoHe3 km, A. pullulans DSM 62074 and H. prunorum CBS 933.72 T were distinguished from all other analysed members of genera Aureobasidium and Kabatiella. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
A new yeast species, Kazachstania wufongensis, is proposed in this paper based on six strains isolated from soil in Taiwan. The species may produce one to four ellipsoidal ascospores in each ascus, directly transformed from diploid cells. Genus assignment and distinction of the species from other recognized species of Kazachstania is based on morphological and physiological characteristics, and on phylogenetic analysis of nucleotide sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene. Sequence analysis of the D1/D2 domains of the LSU rRNA gene reveals that K. wufongensis is a member of the Kazachstania exigua complex, and its phylogenetically closest relatives are K. exigua, K. barnettii, K. bulderi, and K. turicensis. The species can be further differentiated from the other phylogenetically related species based on internal transcribed spacer sequence and electrophoretic karyotype. Therefore, the new species Kazachstania wufongensis sp. nov. is proposed. The type strain of this new species, which was isolated from forest soil in Wufong, Hsinchu, Taiwan, is FN21S03T (=CBS 10886T = BCRC 23138T).  相似文献   

14.
A set of 24 strains belonging to the genus Anabaena (Phylum Cyanobacteria), isolated from diverse geographic locations in India, were evaluated along with three International type strains of Anabaena (ATCC 29414, ATCC 29208 and ATCC 27899) for their morphological, physiological and biochemical diversity. The morphological dataset, consisting of 58 variants for 15 characters, and SDS-PAGE protein profiles comprising 17 polymorphic bands were utilized to differentiate the selected Anabaena strains and explore the patterns of diversity through cluster analysis. Physiological and biochemical characterization with respect to nitrogen fixation and accumulation of chlorophyll and phycobiliproteins led to the identification of some highly promising Anabaena strains for use as biofertilizers and source of pigments. The study highlighted the tremendous inter and intraspecific diversity within the Anabaena isolates and indicated the potential as well as constraints of the morphological and protein profiling datasets for unambiguous differentiation and analyses of diversity among the Anabaena strains.  相似文献   

15.
Bacillus thuringiensis Berliner has previously been classified via the serological identification of flagellar antigens. However, the phylogenetic relationships among strains of B. thuringiensis cannot be investigated by serotyping. Furthermore, high levels of homology have been found in gene sequences among various strains, complicating the determination of their evolutionary relationships. In order to elucidate the phylogenetic relationships within B. thuringiensis, we analyzed 40 strains belonging to typical serotypes using two approaches: an analysis of small subunit (SSU) rRNA sequences and genome profiling (GP) based on temperature gradient gel electrophoresis of random PCR products. The SSU rRNA analysis resulted in all 40 strains forming a single cluster with Bacillus cereus Frankland & Frankland. The distances among the subclusters were too small to further classify the strains. On the other hand, the phylogenetic analysis based on GP resulted in three clusters of B. thuringiensis strains. These results suggest that GP is a better method for the determination of phylogenetic relationships within B. thuringiensis.  相似文献   

16.
The cyanobacterium Anabaena has both symbiotic and free-living forms. The genetic diversity of Anabaena strains symbiotically associated with the aquatic fern Azolla and the evolutionary relationships among these symbionts were evaluated by means of RFLP (restriction fragment length polymorphism) experiments. Three DNA fragments corresponding to nif genes were cloned from the free-living cyanobacterium Anabaena PCC 7120 and used as probes. A mixture of Azolla, Anabaena and bacterial DNA was extracted from Azolla fronds and digested with two restriction enzymes. Single-copy RFLP signals were detected with two of the probes in all Azolla Anabaena examined. Multiple-copy RFLP signals were obtained from the third probe which corresponded to a part of the nif N gene. A total of 46 probe/enzyme combinations were scored as present or absent and used to calculate pairwise Nei's genetic distances among symbiotic Anaebaena strains. Phylogenetic trees summarizing phenetic and cladistic relationships among strains were generated according to three different evolutionary scenarios: parsimony, UPGMA and neighbour joining. All trees revealed identical phylogenetic relationships. Principal component analysis was also used to evaluate genetic similarities and revealed three groups: group one contains the cyanobacteria associated with plants from the Azolla section, group two contains those associated with plants from the pinnata species and group three contains those associated with plants from the nilotica species. The same groups had already been identified earlier in a random amplified polymorphic DNA (RAPD) analysis of Azolla-Anbaena DNA complexes, suggesting that the present Azolla taxonomy should be revised. We now suggest a taxonomy of Anabaena azollae that is parallel to such a revised Azolla taxonomy. An Azolla chloroplast DNA sequence derived from Oryza sativa was also used as an RFLP probe on Azolla DNA to confirm the presence of plant DNA in the total genomic DNA extracted from ferns with or without the symbiont. Our results also suggest that total DNA extracted from the Azolla-Anabaena complexes includes both plant and symbiont DNA and can be used equally well for RFLP analysis of host plant or symbiotic cyanobacteria.  相似文献   

17.
Strains of the invasive toxic cyanobacteria Cylindrospermopsis raciborskii were genetically evaluated with four genetic markers encompassing in total 2.9 kb (16S rRNA, ITS longer spacer, ITS shorter spacer and rpoC1) to assess the phylogenetic relationships, genetic variation and population differentiation of the species across all five continents. The phylogenetic analysis showed that the C. raciborskii strains grouped into three well-supported distinct clusters: (I) European (II) African/American, and (III) Asian/Australian. The European group presented a high genetic similarity with the Asian and the Australian isolates than with the African and American isolates. Several Portuguese isolates were analyzed (n = 7) and revealed a low genetic differentiation with little geographical structure. The genetic distance among groups and phylogenetic relationships obtained in this study suggest that the recent invasion of C. raciborskii in Portuguese and other European temperate environments could have had its origin in the Asian and/or Australian continents.  相似文献   

18.
Planktonic, filamentous cyanobacterial strains from different genera, both toxic and nontoxic strains, were characterized by SDS-PAGE of whole-cell proteins and PCR/RFLP of the 16S rRNA gene. Total protein pattern analysis revealed the mutual relationships at the genus level. Restriction fragment length polymorphism (RFLP) of the 16S rRNA gene with reference strains proved to be a good method for the cyanobacterial taxonomy. The nonheterocystous strains outgrouped from the nitrogen-fixing ones. With both methods, Aphanizomenon clustered with Anabaena, and Nodularia with Nostoc. In the RFLP study of Anabaena, the neurotoxic strains were identical, but the hepatotoxic ones formed a heterogeneous group. Genetic distances found in the RFLP study were short, confirming that close genotypic relationships underlie considerable diversity among cyanobacterial genera. Received: 16 December 1996 / Accepted: 14 May 1997  相似文献   

19.
Ten strains of a new endophytic ascospore-forming, methanol-assimilating yeast were isolated from the galls induced by sawflies on the leaves of willows in the Losiny Ostrov National Park (Moscow region). Standard phenotypical tests and phylogenetic analyses of 18S rRNA gene, 5.8S-ITS gene region and 26S rRNA gene (D1/D2 domains) sequences showed that the species belongs to the genus Ogataea. We describe it as Ogataea cecidiorum and designate type culture KBP Y-3846 (= CBS 11522T = VKM Y-2982T = VKPM Y-3482T = MUCL 52544T = NCAIM Y.01965T) as the type strain. The new species was registered in MycoBank under MB 515233.  相似文献   

20.
Six Limnothrix strains, isolated for the first time from a shallow eutrophic lake in central China, were taxonomically and phylogenetically evaluated by investigating their polyphasic characteristics, including morphological features, cellular ultrastructures, and 16S rRNA gene sequences. All the six strains were morphologically similar, and their trichomes were in average 1.7 μm wide and cells 4.0 μm long, and having small gas vesicles within cells, and therefore identified as Limnothrix planctonica (Woloszynska) Meffert. Cellular ultrastructures of them showed that peripheral thylakoids with 3–5 parallel layers were parietally distributed in the cells. The phylogenetic results based on the 16S rRNA gene sequences showed that all the Limnothrix strains, including the six in this study and those from the Genbank, formed two distinct clusters. The similarity in 16S rDNA sequences between these two clusters was lower than 90%, indicating that these Limnothrix strains belong to different genera. This is the first report on the morphology and phylogeny of L. planctonica strains, providing the new information on taxonomy of the genus Limnothrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号