首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The protein encoded by the FLOWERING LOCUS T (FT) gene from Arabidopsis thaliana seems to be the long-searched florigen, and over-expression of FT orthologues resulted in accelerated flower development in annual and perennial plants. In the present study, we isolated two allelic mRNA sequences of an FT-homologous gene from apple, which was designated as MdFT1. Using a SSR motif this gene was mapped on LG 12 of apple. Over-expression of MdFT1 in Arabidopsis and the commercially important tree species poplar and apple itself using the CaMV 35S or the Arabidopsis Suc2 promoter resulted in significant accelerated flowering compared with wild-type plants. Transgenic T0 plants of Arabidopsis flowered 4–6 days on average earlier than wild-type Arabidopsis under LD conditions. Under short-day conditions Suc2::MdFT1 plants of the T1-generation flowered after 66 ± 18 days, while wild-type plants flowered about 22 days later. All transgenic Arabidopsis plants showed a normal habit except for the early flowering phenotype. Early flowering was detected 6–10 months after transformation in transgenic polar clones containing MdFT1 driven by the CaMV 35S, whereas plants of the transgenic apple clone T780 set up its first flowers during in vitro cultivation. Based on our results we conclude that MdFT1 is responsible for inducing flowering and that the function of the apple FT1 gene is conserved in annual herbaceous species as well as perennial woody species. Furthermore, we discuss the role of MdFT1 in flower development with regard to the findings of genetic studies on apple.  相似文献   

4.
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.

The long-distance movement of OPT3 is selective between herbaceous and woody plants as shown using Malus and Arabidopsis thaliana plants.  相似文献   

5.
The increasing focus on plantation forestry as a renewable source of cellulosic biomass has emphasized the need for tools to study the unique biology of woody genera such as Eucalyptus, Populus and Pinus. The domestication of these woody crops is hampered by long generation times, and breeders are now looking to molecular approaches such as marker-assisted breeding and genetic modification to accelerate tree improvement. Much of what is known about genes involved in the growth and development of plants has come from studies of herbaceous models such as Arabidopsis and rice. However, transferring this information to woody plants often proves difficult, especially for genes expressed in woody stems. Here we report the use of induced somatic sector analysis (ISSA) for characterization of promoter expression patterns directly in the stems of Populus and Eucalyptus trees. As a case study, we used previously characterized primary and secondary cell wall-related cellulose synthase (CesA) promoters cloned from Eucalyptus grandis. We show that ISSA can be used to elucidate the phloem and xylem expression patterns of the CesA genes in Eucalyptus and Populus stems and also show that the staining patterns differ in Eucalyptus and Populus stems. These findings show that ISSA is an efficient approach to investigate promoter function in the developmental context of woody plant tissues and raise questions about the suitability of heterologous promoters for genetic manipulation in plant species.  相似文献   

6.
7.

Background

Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.

Methodology/Principal Finding

Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.

Conclusion/Significance

This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.  相似文献   

8.
9.
The epiphytic vascular mycobiota is scarce and facultative in semi-arid Mediterranean ecosystems. However, unlike in soil conditions, little is known about the factors driving mycorrhizal communities in epiphytic environments. Here, we investigated the arbuscular mycorrhizal fungi (AMF) harboured by 31 plant species occurring on the trunks of Phoenix dactylifera. We wanted to ascertain if host identity and plant functional traits shape mycorrhizal communities. Specifically, we tested the plant life-cycle (perennial versus annual), the plant life-form (herbaceous versus woody), the plant origin (exotic versus native) and the plant species. The plant affiliation to species strongly influenced the AMF community composition. Plant life-form and plant life-cycle also shaped indicator taxa. The AMF structure differed between annual and perennial species and higher AMF richness was detected in perennial plants. The epiphytic plants associated with AMF irrespective of whether they were native or not, probably because here no functional differences derive from plant origin.  相似文献   

10.
11.

Background  

Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus.  相似文献   

12.
Although considerable effort has been directed at identifying and understanding the function and regulation of stress-induced proteins in herbaceous plants, reports concerning woody plants are limited. Studies with herbaceous crops have revealed similarities in the types of proteins that accumulate in response to a wide array of abiotic stresses and hormonal cues such as the accumulation of abscisic acid. Many of the identified proteins appear to be related to dehydrins (the D-11 subgroup of late-embryogenesis-abundant proteins). The objective of the present study was to determine if seasonal induction of dehydrins is a common feature in woody plants and to see if seasonal patterns existed for other stress-induced proteins. Bark tissues from eight species of woody plants were collected monthly for a period of 1.5 years. The species included: peach (Prunus persica) cv. Loring; apple (Malus domestica) cv. Golden Delicious; thornless blackberry (Rubus sp.) cv. Chester; hybrid poplar (Populus nigra); weeping willow (Salix babylonica); flowering dogwood (Cornus florida); sassafras (Sassafras albidum); and black locust (Robinia pseudo-acacia). Immunoblots of bark proteins were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins, and monoclonal antibodies directed against members of the HS70 family of heat-shock proteins. Some proteins, immunologically related to dehydrins, appeared to be constitutive; however, distinct seasonal patterns associated with winter acclimation were also observed in all species. The molecular masses of these proteins varied widely, although similarities were observed in related species (willow and poplar). Identification of proteins using the monoclonal antibodies (HSP70, HSC70, BiP) was more definitive because of their inherent specificity, but seasonal patterns were more variable among the eight species examined. This study represents only a precursory examination of several proteins reported to be stress related in herbaceous plants, but the results indicate that these proteins are also common to woody plants and that further research to characterize their regulation and function in relation to stress adaptation and the perennial life cycle of woody plants is warranted.  相似文献   

13.
14.
The karyotype represents the basic genetic make‐up of a eukaryotic species. Comparative cytogenetic analysis of related species based on individually identified chromosomes has been conducted in only a few plant groups and not yet in woody plants. We have developed a complete set of 19 chromosome painting probes based on the reference genome of the model woody plant Populus trichocarpa. Using sequential fluorescence in situ hybridization we were able to identify all poplar chromosomes in the same metaphase cells, which led to the development of poplar karyotypes based on individually identified chromosomes. We demonstrate that five Populus species, belonging to five different sections within Populus, have maintained a remarkably conserved karyotype. No inter‐chromosomal structural rearrangements were observed on any of the 19 chromosomes among the five species. Thus, the chromosomal synteny in Populus has been remarkably maintained after nearly 14 million years of divergence. We propose that the karyotypes of woody species are more stable than those of herbaceous plants since it may take a longer period of time for woody plants to fix chromosome number or structural variants in natural populations.  相似文献   

15.

Background  

Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.  相似文献   

16.
The biosynthesis of monolignols, the main components of lignin, involves many intermediates and enzymes. The cinnamoyl-CoA reductase (CCR) enzyme catalyzes the conversion of cinnamoyl-CoAs to cinnamaldehydes, i.e. the first specific step in lignin synthesis. The CCR and CCR-like gene family was studied partially in several plant species. This is a comprehensive study of the CCR and CCR-like gene family including genome organization, gene structure, phylogeny across land plant species, and, expression profiling in Populus. Analysis of amino acid motifs enabled the identification of sequence variations in the CCR catalytic site and annotates CCR and CCR-like genes. CCR and CCR-like genes were distributed in three major phylogenetic classes of which one includes the bona fide CCR genes. The other two classes include CCR and CCR-like, of which several genes present a high similarity to cinnamyl alcohol dehydrogenase, or dihydroflavonol reductase (DFR) genes. All CCR, CCR-like, and DFR classes were deeply rooted in the phylogeny of land plants suggesting that their evolution preceded the evolution of lycophytes. Over two thirds of CCR and CCR-like Populus genes were physically distributed on duplicated regions. This suggests that these duplication/retention processes contributed significantly to the size of the CCR and CCR-like gene family. The Populus CCR and CCR-like genes showed six expression patterns in the tissues studied with a preferential expression of PoptrCCR12 in xylem. The other genes present divergent expression profiles with some preferentially expressed in leaves, bark, or both. Several CCR and CCR-like genes were induced or repressed under various abiotic stresses suggesting that their duplication was followed by the evolution of divergent expression profiles and divergence of functions.  相似文献   

17.
Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.  相似文献   

18.

Aims

In the present study, we analysed the diversity of indigenous arbuscular mycorrhizal fungi (AMF) colonising both the roots and rhizosphere soil of an annual herbaceous species, Bromus rubens, and a perennial herbaceous species, Brachypodium retusum, co-occurring in the same Mediterranean, semiarid degraded area. The intention was to study whether these two species promoted the diversity of AM fungi in their rhizospheres differently and to ascertain whether the AMF community harboured by an annual plant species differed from that harboured by a perennial species when both grew in the same place.

Methods

The AMF large subunit ribosomal RNA genes (LSU) were subjected to nested PCR, cloning, sequencing and phylogenetic analysis.

Results

Twenty AMF sequence types belonging to Glomus group A, Glomus group B and Diversispora were identified. The two plant species differed in the AMF community composition in their roots, B. rubens showing a higher diversity of AMF than B. retusum. However the composition of the AMF communities associated with the two rhizosphere soils was similar.

Conclusions

These results suggest that the management of these Mediterranean, semiarid degraded areas should include the promotion of annual herbaceous plant communities in order to maintain the sustainability and productivity of these ecosystems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号