共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Developmental changes of myelin proteins in chick sciatic nerve were studied at the stage of myelination by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The myelin of adult hen peripheral nervous system (PNS) contained two glycoproteins (BR-P0 and PASII), both of which are unique to PNS myelin, in addition to the basic encephalitogenic protein, BP, which is common to CNS and PNS myelin. The other basic protein (BF-P2) found in the PNS of other species was not definitely detectable in hen PNS. At the early stages of myelination (from 14 to 18 embryonic days) the amounts of myelin proteins increased rapidly in parallel with the increase in number of layers of the myelin sheath of the PNS. At 14 embryonic days high molecular weight proteins were dominant, while myelin specific proteins were barely detectable in the PNS myelin fraction. At 18 embryonic days, however, BR-PO, BP and PASII proteins became the main protein components of the PNS myelin, whereas high molecular weight proteins decreased in quantitative importance during development. At the early stage of myelination other glycoproteins were also detectable in the PNS myelin. Radioactive fucose was actively incorporated into the two glycoproteins, BR-P0 and PASII, at the early stage of myelination in vivo. These results suggested that myelin proteins especially glycoproteins, may play an important role in PNS myelin formation. 相似文献
2.
Abstract— The effects of brief exposures of a number of depolarizing agents on 24Na+ influx and on the Na+, K+ and ATP contents of synaptosomes were studied using a Millipore filtration technique to terminate the reaction. When synaptosomes were incubated in normal medium, there was a rapid influx of 24Na+ and a gain in Na’contents; neither the 24Na+ influx nor the Na+ gain were blocked by tetrodotoxin suggesting that this Na+ entry did not involve Na+-channels. Veratridine markedly increased the rate of 24Na+ influx into synaptosomes and also increased the Na+ content and decreased the K+ content of synaptosomes within the first 10s of exposure. The normal ion contents were reversed by 1 min. The effects of veratridine on Na+ influx and on synaptosomal ion contents were prevented by tetrodotoxin and required Na+ in the medium. The ionophores gramicidin D and valinomycin also rapidly reversed the Na+ and K+ contents of synaptosomes, but these effects could not be blocked by tetrodotoxin. The reducing effect of gramicidin D on synaptosomal K+ content required Na’in the medium, whereas valinomycin caused a fall in the K+ content of synaptosomes in a Na+-free medium. Veratridine and gramicidin D, at concentrations known to reverse the synaptosomal ion contents, did not affect synaptosomal ATP levels. In contrast, valinomycin and NaCN caused an abrupt fall in synaptosomal ATP levels. The above findings suggest that veratridine quickly alters synaptosomal Na+ and K+ contents by opening Na +-channels in the presynaptic membrane, and provide direct evidence for the existence of Na+-channels in synaptosomes. In contrast, gramicidin D and valinomycin appear to act independently of Na +-channels, possibly by their ionophoric effects and, in the case of valinomycin, by diminishing synaptosomal ATP contents and hence diminishing Na+-pump activity. The rapid reversals of Na+ and K+ contents by these drugs could affect the resting membrane potentials, Na+-Ca2+ exchange across the synaptosomal membrane, and the release, synthesis and uptake of neurotransmitters by synaptosomes. 相似文献
3.
SYNAPTOSOMAL PLASMA MEMBRANES. ACYL GROUP COMPOSITION OF PHOSPHOGLYCERIDES and (Na+ + K+ )-ATPase ACTIVITY DURING FATTY ACID DEFICIENCY 总被引:1,自引:0,他引:1
Abstract— Essential fatty acid deficiency was induced in mice after feeding a fatty acid deficient diet for 6 months. Activity of the (Na+ + K+ )-ATPase in the total brain homogenates and in isolated synaptosomal plasma membranes was significantly higher ( P & lt; 0 05) in the deficient mice than the controls. Analysis of the acyl group composition of phosphoglycerides in brain as well as in the synaptosomal plasma membranes showed that mice fed the deficient diet had increased levels of 20:3(n-9) and 22:3(n-9) and decreased levels of 20:4(n-6) and 22:4(n-6). However, acyl group changes varied among individual phosphoglycerides and were most obvious in the two species of ethanolamine phosphoglycerides. A decrease in 22:6(n-3) level was also observed in some phosphoglycerides of the synaptosomal plasma membranes especially the diacyl- sn -glycerophosphorylserine. In this experiment, a new solvent system for chromatographic separation of the diacyl- sn -glycerophosphorylserine and diacyl- sn -glycerophosphorylinositol was reported. The separation technique was suitable for analysis of acyl group composition of individual phosphoglycerides by gas-liquid chromatography. The results were consislent with a positive correlation of the non-polar acyl groups of brain membranes with the active ion transport activity. The increase in enzymic activity during deficient state may be the result of a biological adaptation due to structural alteration of the brain membranes. 相似文献
4.
Ouabain Binding, ATP Hydrolysis, and Na+ ,K+ -Pump Activity During Chemical Modification of Brain and Muscle Na+ ,K+ -ATPase 总被引:1,自引:0,他引:1
J. Teisinger H. Zemková P. Svoboda E. Amler F. Vyskoil 《Journal of neurochemistry》1992,58(3):1066-1072
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites. 相似文献
5.
R. H. Jongbloed J. M. A. M. Clement G. W. F. H. Borst-Pauwels 《Physiologia plantarum》1991,83(3):427-432
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+. 相似文献
6.
Paul Jensén 《Physiologia plantarum》1982,56(3):259-265
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx. 相似文献
7.
T. D. White 《Journal of neurochemistry》1977,29(2):193-198
Abstract— —The effects of brief exposures of rat brain synaptosomes to veratridine, gramicidin D and valinomycin on noradrenaline uptake were investigated. All three drugs inhibited the Na+ -dependent component of noradrenaline uptake by synaptosomes. These effects were independent of extracellular Ca2 + concentrations, indicating that the reductions were not due to the release of newly accumulated noradrenaline.
Gramicidin D reduced the Vmax for noradrenaline uptake, whereas veratridine and valinomycin reduced the Vmax and also increased the Vm for uptake.
Most of these findings can be explained on the basis of the effects that these drugs have on the inward-directed electrochemical gradients for Na+ across synaptosomal membranes, although, in the cases of veratridine and valinomycin, the elevated Km 's suggest that an impairment of noradrenaline binding to its carriers might also be involved. 相似文献
Gramicidin D reduced the V
Most of these findings can be explained on the basis of the effects that these drugs have on the inward-directed electrochemical gradients for Na
8.
Miriam Banay-Schwartz D. N. Teller Babette Horn A. Lajtha 《Journal of neurochemistry》1977,29(3):403-410
Abstract— Mouse brain slices were depleted of K+ by three 10-min incubations-in oxygenated HEPES-buffered medium lacking glucose and K+ . Addition of K+ or Rb+ (or Cs+ , to a smaller degree) with glucose, or with succinate, malate, and pyruvate (SMP) before incubation at 37°C with 14 C-amino acids restored active low-affinity transport of d -Glu, α-aminoisobutyrate (AIB), GABA, Gly, His, Val, Leu, Lys, and Orn. Ouabain at 1–2μ m with Rb+ was more inhibitory with SMP than with glucose, suggesting that the glycoside may affect specific energy coupling to transport. Valinomycin, in contrast, showed no specificity of inhibition of amino acid uptake with glucose or SMP and K+ or Rb+ . Cs+ partially restored amino acid uptake, but Li+ was less effective than Cs + . NaF at 10 m m with SMP + Rb+ , or SMP + K+ did not inhibit amino acid uptake. Therefore, it was possible to dissociate glycolysis and Na+ , K + -ATPase activity from amino acid transport. The ion replacements for K + that supported active amino acid transport indicate that the specificity of ions in possible ionic gradients for transport energetics should be reexamined. 相似文献
9.
The effects of external K+ , H+ and Ca2+ concentrations on the intracellular K+ concentration, [K+ ]i, and the K+ -ATPase activity in 2-day-old mung bean roots [ Vigna mungo (L.) Hepper] were investigated. [K+ ]i, in mung bean roots was markedly decreased by external K+ or H+ stress and did not recover the initial value even after the stress was removed. This decrease in [K+ ]i, gradually disappeared with the addition of (Ca2+ . Ca2+ may offset the harmful effects of ion stress. Ca2+ seems to have two effects on K+ transport; control of K+ permeability and activation of K+ uptake, although K+ -ATPase activity was inhibited by Ca2+ concentrations higher than 10–4 M. We suggest that Ca2+ activates K+ uptake indirectly through the acidification of the cytoplasm. 相似文献
10.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants. 相似文献
11.
12.
Abstract— 45 Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45 Ca2+ was bound within the synaptosome. 45 Ca2+ -ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45 Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl− contents. Botulinum toxin inhibits the K.+ -stimulated release of [14 C]ACh from synaptosomes but the ionophore released [14 C]ACh from both normal and botulinum-treated preparations in a Ca2+ -dependent manner. However, it also elicited Ca2+ -dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14 C]ACh (but not [14 C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release. 相似文献
13.
H. K. Kimelberg 《Journal of neurochemistry》1974,22(6):971-976
—The ouabain-sensitive K+ uptake and ATPase activities of cultured glioma and neuroblastoma cells were studied. Both cell lines showed ouabain-sensitive K+ uptake which correlated with the level of [Na++ K+]ATPase activity found in the respective total cell homogenate. The glioma cells had a 2.1-fold higher rate of K+ uptake than neuroblastoma cells, and a 2.4-fold higher [Na++ K+]ATPase activity. In the presence of ouabain neuroblastoma cells released K+ and took up Na+ in a 1:1 ratio. These results are compared and contrasted with similar studies on brain tissue and isolated cells. It is suggested that the cultured cell lines may serve as good models for the cation transport properties of their tissue counterparts. 相似文献
14.
SYLVIA LINDBERG 《Physiologia plantarum》1980,48(1):65-70
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets. 相似文献
15.
Abstract— In the present experiments, the resting and stimulus evoked release of newly synthesized [3H]acetylcholine from the caudate nucleus, the cerebral cortex and the cerebellar cortex into the perfusate of the push-pull cannula was studied in the unanesthetized, midpontine, pretrigeminally transected cat following infusion at the push-pull site of [3H]choline. Separation of the metabolites in the perfusate revealed that after 20 min, approximately 20% of the recovered radioactivity in the sample was in a lipid fraction, about 10% was found to be phosphorylcholine and around 3% was observed to be incorporated into acetylcholine. The rest of the recovered radioactivity remained as choline. Electrical stimulation applied directly to the caudate nucleus, local potassium depolarization, atropine and pentylenetetrazol were all observed to result in a significant and stimulus dependent increase in the levels of [3H]acetyIchoIine, but not [3H]choline or [14C]urea in the effluent of the push-pull cannula located in the caudate nucleus. A similar release of newly synthesized [3H]acetylcholine was observed following atropine and potassium stimulation in the cerebral but not the cerebellar cortex. The specificity of this evoked increase in the levels of [3H]acetylchoiine is substantiated by obtaining the release with stimuli having different modes of action, by the absence of stimulus evoked changes in the levels of other water-soluble elements found in the perfusate and by the absence of an observable release of [3H]acetylcholine in perfusion experiments involving the cerebellum, a tissue not thought to have strong cholinergic innervation. The percentage increases in release of [3H] acetylcholine over baseline levels evoked by the various methods closely corresponded to those reported in the literature for authentic acetylcholine. This was taken to suggest that the neuronal pools containing endogenous acetylcholine and those containing newly synthesized acetylcholine, if not identical, were disposed to behave in the same manner following the activation of the synapse. 相似文献
16.
PAUL JENSÉN 《Physiologia plantarum》1980,49(3):291-295
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age. 相似文献
17.
Kinetic studies of a microsomal, dithiotreitol treated, homogenate from sugar beet roots led to the following conclusions about its ATPase activity: (1) MgATP in complex appears to be the primary substrate for the reaction. The reciprocal equilibrium constant for the binding to the enzyme is estimated to be approximately 0.2 × 10?3M. (2) Free ATP acts as a competitive inhibitor of the MgATP. The binding constant is about twice as high as for MgATP. Consequently the enzyme has less affinity for ATP than for MgATP. (3) Free Mg2+ has little influence on the velocity, as the binding affinity of the enzyme for Mg2+ is almost negligible. 相似文献
18.
The influence of the auxins indole-3-acetic acid (IAA) and 1-napthylene acetic acid (NAA) on K+ channels and their control was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes to record membrane potentials and to monitor K+ channel currents under voltage clamp during exposures to 0.1–100 µM IAA and NAA. Following impalements, challenge with either IAA or NAA in the presence of 10 mM KCl resulted in the concerted modulation of at least four different currents with distinct kinetic characteristics and concentration dependencies. Equivalent concentrations of benzoic acid were wholly without effect. Most striking, current carried by inward-rectifying K+ channels (IK,in) exhibited a bimodal response to both IAA and NAA which was reversed on washing the auxins from the bathing medium. The steady-state current was augmented 1.3- to 2-fold at concentrations between 0.1 and 10 µM and antagonized at concentrations near 30 µM and above. Auxin agonism of IK,in was time- and voltage-independent. By contrast, IK,in inactivation at the higher auxin concentrations was marked by a voltage-dependence and slowing of the kinetics for current activation. Inactivation of IK,in by the auxins was relieved when cytoplasmic pH (pHi) was clamped near 7.0 in the presence of 30 mM Na+-butyrate. In addition to the control of IK,in, current carried by a second class of (outward-rectifying) K+ channels rose in a monotonic and largely voltage-independent manner with auxin concentrations about 10 µM and above, and IAA and NAA also activated an inward-going current with a voltage dependence characteristic of guard cell anion channels. Further changes in background current were consistent with a limited activation of the H+-ATPase. Over the concentration range examined, the auxins evoked membrane hyperpolarizations and depolarizations of up to ±12–19 mV, depending on the free-running membrane potential prevailing before auxin additions. Prolonging exposures to 100 µM auxin beyond 3–5 min frequently elicited rapid transitions to voltages near EK as well as regenerative action potentials. However, in every case the voltage response was a predictable consequence of auxin action on the K+ channels and, at 100 µM auxin, on the anion current. These results demonstrate a control of K+ channel activity by auxin, consistent with the roles of these channels in mediating K+ flux for stomatal movements; the data associate a bimodal characteristic with the activity of IK,in, implicating pHi as a putative intermediate in its control, and offer strong evidence for a multiplicity of signal cascades evoked by auxin; finally, they highlight a coordinate modulation of transport activities by auxin, thereby drawing a close analogy to the pattern of stimulus-response coupling in abscisic acid. 相似文献
19.
For determination of the effect of K+ on macro- and micronuclear differentiation Paramecium caudatum exconjugants were transferred to medium with various concentrations of Valinomycin and/or K+ at the critical stage of nuclear differentiation. The differentiation was not disturbed by transfer to medium containing 1.5 mM to 50 mM KCl. Injection of KCl solution at the critical stage also did not affect differentiation of the macronucleus appreciably. But change of the KCl concentration in the medium at the critical stage interrupted of normal development of the macronucleus.
Macro- and micronuclear differentiations after conjugation are known to be determined by the antero-posterior localization of postzygotic micronuclei. This nuclear localization is achieved by elongation of mitotic spindles and marked shortening of the cell length at the time of micronuclear division. Successive measurements of cell length at 25°C showed that cells began to shorten 1.5 hr after mating-pair separation, reaching to half the initial length about 2.5 hr after the separation, and then returning to recover their initial length within about 50 min. In a solution of K+ (50 mM) plus Valinomycin (1μg/ml or more), cell shortening was inhibited. It is not known whether elongation of mitotic spindles at the time of critical nuclear division was disordered by this treatment, but the macronuclear anlagen developed in the treated cells. Thus shortening in the cell length is not indispensable for nuclear differentiation. 相似文献
Macro- and micronuclear differentiations after conjugation are known to be determined by the antero-posterior localization of postzygotic micronuclei. This nuclear localization is achieved by elongation of mitotic spindles and marked shortening of the cell length at the time of micronuclear division. Successive measurements of cell length at 25°C showed that cells began to shorten 1.5 hr after mating-pair separation, reaching to half the initial length about 2.5 hr after the separation, and then returning to recover their initial length within about 50 min. In a solution of K
20.
Alain Gerbi Marcel Debray Jean-Michel Maixent† Claude Chanez Jean-Marie Bourre 《Journal of neurochemistry》1993,60(1):246-252
Abstract: The Na+ sensitivity of whole brain membrane Na+ ,K+ -ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+ , we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+ , K+ -ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+ ); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+ ). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes. 相似文献