首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Developmental changes of myelin proteins in chick sciatic nerve were studied at the stage of myelination by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. The myelin of adult hen peripheral nervous system (PNS) contained two glycoproteins (BR-P0 and PASII), both of which are unique to PNS myelin, in addition to the basic encephalitogenic protein, BP, which is common to CNS and PNS myelin. The other basic protein (BF-P2) found in the PNS of other species was not definitely detectable in hen PNS. At the early stages of myelination (from 14 to 18 embryonic days) the amounts of myelin proteins increased rapidly in parallel with the increase in number of layers of the myelin sheath of the PNS. At 14 embryonic days high molecular weight proteins were dominant, while myelin specific proteins were barely detectable in the PNS myelin fraction. At 18 embryonic days, however, BR-PO, BP and PASII proteins became the main protein components of the PNS myelin, whereas high molecular weight proteins decreased in quantitative importance during development. At the early stage of myelination other glycoproteins were also detectable in the PNS myelin. Radioactive fucose was actively incorporated into the two glycoproteins, BR-P0 and PASII, at the early stage of myelination in vivo. These results suggested that myelin proteins especially glycoproteins, may play an important role in PNS myelin formation.  相似文献   

2.
Abstract— It has been reported that the release of GABA by high K+ is Ca2+-dependent while release induced by veratridine or electrical stimulation has been frequently found to be independent of Ca2+. To see the source of Ca2+-dependent and independent release of GABA, cortical slices which had accumulated [3H]GABA were exposed to 50 mm -K+ or 50 μm -veratridine for 48min. In the presence of Ca2+ the 2 agents released approx the same amount of [3H]GABA but tetrodotoxin (TTX) abolished release induced only by veratridine, while omission of Ca2+ reduced release induced only by 50mm -K+. Pre-exposure of the slices for 48min to 50mm -K+ in the presence of Ca2+ reduced the second release by 50mm -K+ by 77% and that by veratridine by 74%, suggesting that in the presence of Ca2+ the 2 depolarizing agents release [3H]GABA from the same pool. Pre-exposure to 50mm -K+ in the absence of Ca2+ reduced the second release by 50mm -K+ or by veratridine only by 37 and 27% respectively, indicating that most of the reduction in release was the result of a depletion of releasable [3H]GABA stores. The second exposure to 50mm -K+ in the absence of Ca2+ reduced the evoked release further, while exposure to veratridine in the absence of Ca2+, after depletion of the stores, enhanced release 2.7 times. Electrical stimulation (64 Hz, 2 ms, 40 mA, alternating polarity) during 24min in the presence of Ca” caused an initial 5-fold increase in efflux, which declined subsequently. In the absence of Ca2+, instead of a rapid increase, a slow but smaller increase in the efflux of [3H]GABA was found. TTX almost completely abolished the electrically evoked increase in release. Pre-treatment with 50mm -K+ reduced the electrically evoked release by 94% but electrical stimulation in the absence of Ca2+ after depletion of releasable stores doubled this release. Results suggest that in the presence of Ca2+, high K+, veratridine and electrical stimulation release [3H]GABA from the same Ca2+-dependent store, but in the absence of Ca2+ veratridine and electrical stimulation enhance the release from a Ca2+-independent store, probably as a result of an increased influx of Na+.  相似文献   

3.
Abstract— The effects of brief exposures of a number of depolarizing agents on 24Na+ influx and on the Na+, K+ and ATP contents of synaptosomes were studied using a Millipore filtration technique to terminate the reaction. When synaptosomes were incubated in normal medium, there was a rapid influx of 24Na+ and a gain in Na’contents; neither the 24Na+ influx nor the Na+ gain were blocked by tetrodotoxin suggesting that this Na+ entry did not involve Na+-channels. Veratridine markedly increased the rate of 24Na+ influx into synaptosomes and also increased the Na+ content and decreased the K+ content of synaptosomes within the first 10s of exposure. The normal ion contents were reversed by 1 min. The effects of veratridine on Na+ influx and on synaptosomal ion contents were prevented by tetrodotoxin and required Na+ in the medium. The ionophores gramicidin D and valinomycin also rapidly reversed the Na+ and K+ contents of synaptosomes, but these effects could not be blocked by tetrodotoxin. The reducing effect of gramicidin D on synaptosomal K+ content required Na’in the medium, whereas valinomycin caused a fall in the K+ content of synaptosomes in a Na+-free medium. Veratridine and gramicidin D, at concentrations known to reverse the synaptosomal ion contents, did not affect synaptosomal ATP levels. In contrast, valinomycin and NaCN caused an abrupt fall in synaptosomal ATP levels. The above findings suggest that veratridine quickly alters synaptosomal Na+ and K+ contents by opening Na +-channels in the presynaptic membrane, and provide direct evidence for the existence of Na+-channels in synaptosomes. In contrast, gramicidin D and valinomycin appear to act independently of Na +-channels, possibly by their ionophoric effects and, in the case of valinomycin, by diminishing synaptosomal ATP contents and hence diminishing Na+-pump activity. The rapid reversals of Na+ and K+ contents by these drugs could affect the resting membrane potentials, Na+-Ca2+ exchange across the synaptosomal membrane, and the release, synthesis and uptake of neurotransmitters by synaptosomes.  相似文献   

4.
Abstract—
  • 1 Upon incubation, slices of brain tissue took up fluid; the degree of swelling increased with increasing age. No sweiling occurred in slices from foetal brain. Since this swelling was associated with increases in the inulin space, the percentage of inulin space in slices at the end of incubation increased during brain development.
  • 2 Most of the capacity for ion transport seemed to be absent from foetal brain. In vivo and in slices, Na+ was very high and K+ was very low in comparison to levels at other ages. There was a rapid change around birth, but no significant change at later ages. Upon incubation, Na+ levels increased in other slices, but not in slices of foetal brain.
  • 3 Upon incubation of the slices, ATP levels were restored to levels close to those in the living brain; there were no significant alterations in available energy during development to explain changes in amino acid transport.
  • 4 The composition of the free pool of cerebral amino acids in vivo changed with development, with some compounds (glutamic acid and related compounds) increasing, others (mostly‘essential’amino acids) decreasing, with age. These changes were not linear with time, and the level of a compound might exhibit several peaks during development.
  • 5 The uptake (influx) of taurine, glutamate and glycine into brain slices increased rapidly during the foetal and early neonatal periods, reached a maximum between 2 and 3 weeks of postnatal age and then declined to adult levels. The levels of steady-state uptake with glycine also exhibited a maximal peak at 2-3 weeks of postnatal age. Steady-state uptake of taurine and glutamate reached adult levels by about 3 weeks of age.
  • 6 The pattern of inhibition of amino acid transport by two specific amino acid analogues changed during development for some amino acids (GABA, glycine and glutamate), indicating an alteration in substrate specificity.
  • 7 The results demonstrate complex changes in cerebral amino acid transport during development, with several maxima or minima and with changes in specificity for at least some compounds.
  相似文献   

5.
—The effect of tissue damage on the uptake of amino acids by brain slices was investigated by measuring uptake in slices of different thickness and measuring the distribution of [14C]-labelled amino acid on the surface and in the centre of incubated slices. The uptake of glutamate, aspartate, and GABA was greater in 0.1 mm-thick slices than in 0.42 mm-thick slices in short and in long (up to 120 min) incubations; the uptake of other amino acids was equal or greater in the 0.42 mm-thick slices. The water content of incubated slices did not change greatly from surface to centre; inulin space was greater at the surface, and in slices from cortex, especially higher at the cut surface. Na+ and K+ concentrations were also higher at the surface. In the rest of the slice space, inulin, Na+ and K+ distribution was quite uniform. The distribution of ATP was inhomogeneous: in thinner slices the centre concentration was higher; in thicker slices the centre concentration was lower. Amino acid uptake initially (at 5 min) was higher at the surface, especially in the thicker slices; after longer time (30 min) incubation, the distribution of lysine and leucine was uniform, and glutamate uptake was greater at the surface. The inhomogeneity of distribution increased with increasing thickness of the slices. We concluded that the uptake of some amino acids (perhaps those for which, beside a low affinity transport, also a higher affinity transport system exists) is greater in thinner slices and greater on the surface of slices, and there is an initially inhomogeneous distribution during amino acid uptake. The uptake on the surface constitutes only a small portion of the total uptake, and tissue damage does not explain the greater uptake of amino acids by slices in comparison to the brain in vivo. This shows the higher transport capacity of cells in the brain and emphasizes the importance of mechanisms controlling the metabolite composition of the extracellular fluid in finally influencing the metabolite composition of the brain itself.  相似文献   

6.
Abstract— Essential fatty acid deficiency was induced in mice after feeding a fatty acid deficient diet for 6 months. Activity of the (Na++ K+)-ATPase in the total brain homogenates and in isolated synaptosomal plasma membranes was significantly higher ( P & lt; 0 05) in the deficient mice than the controls. Analysis of the acyl group composition of phosphoglycerides in brain as well as in the synaptosomal plasma membranes showed that mice fed the deficient diet had increased levels of 20:3(n-9) and 22:3(n-9) and decreased levels of 20:4(n-6) and 22:4(n-6). However, acyl group changes varied among individual phosphoglycerides and were most obvious in the two species of ethanolamine phosphoglycerides. A decrease in 22:6(n-3) level was also observed in some phosphoglycerides of the synaptosomal plasma membranes especially the diacyl- sn -glycerophosphorylserine. In this experiment, a new solvent system for chromatographic separation of the diacyl- sn -glycerophosphorylserine and diacyl- sn -glycerophosphorylinositol was reported. The separation technique was suitable for analysis of acyl group composition of individual phosphoglycerides by gas-liquid chromatography. The results were consislent with a positive correlation of the non-polar acyl groups of brain membranes with the active ion transport activity. The increase in enzymic activity during deficient state may be the result of a biological adaptation due to structural alteration of the brain membranes.  相似文献   

7.
Whole homogenates of mouse brain and nerve-ending fractions of mouse and human brain were obtained at various age levels representative of maturity and old age. The mice were 3, 8 and 26–29 months old and the humans ranged in age from 19 to 84 y. Measurements of (Na++ K+)-ATPase in whole brain homogenate of mouse did not reveal any significant differences in relation to age. However, the ability of ethanol at various concentrations to inhibit membrane-bound synaptosomal (Na++ K+)-ATPase was significantly greater in older mice and humans. The data are interpreted as indicating a change in the property of synaptic membranes as a consequence of advancing age.  相似文献   

8.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

9.
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx.  相似文献   

10.
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+.  相似文献   

11.
Passive fluxes of K+ (86Rb) into roots of sunflower ( Helianthus annuus L. cv. Uniflorus) were determined at low K+ concentration (0.1 and 1.0 mM K+) in the ambient solution. Metabolic uptake of K+ was inhibited by 10−4M 2,4-dinitrophenol (DNP). K+ (86Rb) fluxes were studied both continuously and by time differentiation of uptake. In high K+ roots passive uptake was directly proportional to the K+ concentration of the uptake solution, indicating free diffusion. This assumption was supported by the fact that passive Rb+ uptake was not affected by high K+ concentrations. In low K+ roots the passive uptake of K+ was higher than in high K+ roots. The increase was possibly due to carrier-mediated K+ transport. As K+ effluxes were quantitatively similar to influxes, it is suggested that passive K+ fluxes represent exchange diffusion without relation to net K+ transport.  相似文献   

12.
Abstract— —The effects of brief exposures of rat brain synaptosomes to veratridine, gramicidin D and valinomycin on noradrenaline uptake were investigated. All three drugs inhibited the Na+-dependent component of noradrenaline uptake by synaptosomes. These effects were independent of extracellular Ca2 + concentrations, indicating that the reductions were not due to the release of newly accumulated noradrenaline.
Gramicidin D reduced the Vmax for noradrenaline uptake, whereas veratridine and valinomycin reduced the Vmax and also increased the Vm for uptake.
Most of these findings can be explained on the basis of the effects that these drugs have on the inward-directed electrochemical gradients for Na+ across synaptosomal membranes, although, in the cases of veratridine and valinomycin, the elevated Km's suggest that an impairment of noradrenaline binding to its carriers might also be involved.  相似文献   

13.
Abstract— Mouse brain slices were depleted of K+ by three 10-min incubations-in oxygenated HEPES-buffered medium lacking glucose and K+. Addition of K+ or Rb+ (or Cs+, to a smaller degree) with glucose, or with succinate, malate, and pyruvate (SMP) before incubation at 37°C with 14C-amino acids restored active low-affinity transport of d -Glu, α-aminoisobutyrate (AIB), GABA, Gly, His, Val, Leu, Lys, and Orn. Ouabain at 1–2μ m with Rb+ was more inhibitory with SMP than with glucose, suggesting that the glycoside may affect specific energy coupling to transport. Valinomycin, in contrast, showed no specificity of inhibition of amino acid uptake with glucose or SMP and K+ or Rb+. Cs+ partially restored amino acid uptake, but Li+ was less effective than Cs +. NaF at 10 m m with SMP + Rb+, or SMP + K+ did not inhibit amino acid uptake. Therefore, it was possible to dissociate glycolysis and Na+, K + -ATPase activity from amino acid transport. The ion replacements for K + that supported active amino acid transport indicate that the specificity of ions in possible ionic gradients for transport energetics should be reexamined.  相似文献   

14.
The effects of external K+, H+ and Ca2+ concentrations on the intracellular K+ concentration, [K+]i, and the K+-ATPase activity in 2-day-old mung bean roots [ Vigna mungo (L.) Hepper] were investigated. [K+]i, in mung bean roots was markedly decreased by external K+ or H+ stress and did not recover the initial value even after the stress was removed. This decrease in [K+]i, gradually disappeared with the addition of (Ca2+. Ca2+ may offset the harmful effects of ion stress. Ca2+ seems to have two effects on K+ transport; control of K+ permeability and activation of K+ uptake, although K+-ATPase activity was inhibited by Ca2+ concentrations higher than 10–4 M. We suggest that Ca2+ activates K+ uptake indirectly through the acidification of the cytoplasm.  相似文献   

15.
16.
The stimulation of dicotyledonous leaf growth by light depends on increased H+ efflux, to acidify and loosen the cell walls, and is enhanced by K+ uptake. The role of K+ is generally considered to be osmotic for turgor maintenance. In coleoptiles, auxin‐induced cell elongation and wall acidification depend on K+ uptake through tetraethylammonium (TEA)‐sensitive channels (Claussen et al., Planta 201, 227–234, 1997), and auxin stimulates the expression of inward‐rectifying K+ channels ( Philippar et al. 1999) . The role of K+ in growing, leaf mesophyll cells has been investigated in the present study by measuring the consequences of blocking K+ uptake on several growth‐related processes, including solute accumulation, apoplast acidification, and membrane polarization. The results show that light‐stimulated growth and wall acidification of young tobacco leaves is dependent on K+ uptake. Light‐stimulated growth is enhanced three‐fold over dark levels with increasing external K+, and this effect is blocked by the K+ channel blockers, TEA, Ba++ and Cs+. Incubation in 10 mm TEA reduced light‐stimulated growth and K+ uptake by 85%, and completely inhibited light‐stimulated wall acidification and membrane polarization. Although K+ uptake is significantly reduced in the presence of TEA, solute accumulation is increased. We suggest that the primary role of K+ in light‐stimulated leaf growth is to provide electrical counterbalance to H+ efflux, rather than to contribute to solute accumulation and turgor maintenance.  相似文献   

17.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants.  相似文献   

18.
—The ouabain-sensitive K+ uptake and ATPase activities of cultured glioma and neuroblastoma cells were studied. Both cell lines showed ouabain-sensitive K+ uptake which correlated with the level of [Na++ K+]ATPase activity found in the respective total cell homogenate. The glioma cells had a 2.1-fold higher rate of K+ uptake than neuroblastoma cells, and a 2.4-fold higher [Na++ K+]ATPase activity. In the presence of ouabain neuroblastoma cells released K+ and took up Na+ in a 1:1 ratio. These results are compared and contrasted with similar studies on brain tissue and isolated cells. It is suggested that the cultured cell lines may serve as good models for the cation transport properties of their tissue counterparts.  相似文献   

19.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

20.
Abstract— In the present experiments, the resting and stimulus evoked release of newly synthesized [3H]acetylcholine from the caudate nucleus, the cerebral cortex and the cerebellar cortex into the perfusate of the push-pull cannula was studied in the unanesthetized, midpontine, pretrigeminally transected cat following infusion at the push-pull site of [3H]choline. Separation of the metabolites in the perfusate revealed that after 20 min, approximately 20% of the recovered radioactivity in the sample was in a lipid fraction, about 10% was found to be phosphorylcholine and around 3% was observed to be incorporated into acetylcholine. The rest of the recovered radioactivity remained as choline. Electrical stimulation applied directly to the caudate nucleus, local potassium depolarization, atropine and pentylenetetrazol were all observed to result in a significant and stimulus dependent increase in the levels of [3H]acetyIchoIine, but not [3H]choline or [14C]urea in the effluent of the push-pull cannula located in the caudate nucleus. A similar release of newly synthesized [3H]acetylcholine was observed following atropine and potassium stimulation in the cerebral but not the cerebellar cortex. The specificity of this evoked increase in the levels of [3H]acetylchoiine is substantiated by obtaining the release with stimuli having different modes of action, by the absence of stimulus evoked changes in the levels of other water-soluble elements found in the perfusate and by the absence of an observable release of [3H]acetylcholine in perfusion experiments involving the cerebellum, a tissue not thought to have strong cholinergic innervation. The percentage increases in release of [3H] acetylcholine over baseline levels evoked by the various methods closely corresponded to those reported in the literature for authentic acetylcholine. This was taken to suggest that the neuronal pools containing endogenous acetylcholine and those containing newly synthesized acetylcholine, if not identical, were disposed to behave in the same manner following the activation of the synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号