首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ATP phosphohydrolase (ATPase) activity of a corn (Zea mays L., WF9 × Mo17) root plasma membrane fraction was enriched almost 2-fold by selective extraction with 0.1% (w/v) deoxycholate. The detergent treatment solubilized about 30% of the total membrane protein and some ATP hydrolyzing activity that was not K+-stimulated, but the major portion of the ATPase activity could be pelleted with membranes. The properties of the ATPase associated with the detergent-extracted plasma membrane fraction were similar to those for the ATPase of the untreated plasma membrane fraction with respect to substrate specificity, pH optimum, kinetics with MgATP, ion stimulation, and inhibitor sensitivity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed only minor differences in protein composition resulting from the detergent treatment.

The plasma membrane fraction from corn roots contained an endogenous protein kinase activity. This was shown by the time course of phosphate incorporation and by the labeling of a number of protein bands on SDS-polyacrylamide gel electrophoresis. The deoxycholate treatment removed measurable protein kinase activity and allowed the demonstration of a rapidly turning over covalent phosphorylated intermediate associated with the detergent-extracted plasma membrane fraction. The phosphorylated intermediate was present as a 100,000 dalton polypeptide and may represent the catalytic subunit of the plasma membrane K+-ATPase.

  相似文献   

2.
Booz ML  Travis RL 《Plant physiology》1980,66(6):1037-1043
The polypeptide complement of enriched soybean (Glycine max [L.] Merr. cult. wells) root plasma membrane fractions was studied by two-dimensional gel electrophoresis. Good resolution was obtained when polypeptides were solubilized in sodium dodecyl sulfate and when butylated hydroxytoluene was included in the vesicle isolation and solubilization media. The pattern obtained on the two-dimensional slab gel for root plasma membrane was characteristic for that membrane. The polypeptide complements from mitochondrial membranes and from enriched fractions of three other endomembrane components were solubilized and electrophoresed for comparison. Each membrane preparation was identifiable on the basis of its characteristic electrophoretogram. Electrophoresis of protein solubilized from plasma membrane fractions isolated from meristematic and mature root tissue revealed both qualitative and quantitative differences in the respective protein complements.  相似文献   

3.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

4.
The plasma membrane H(+)-ATPase activity from corn seedling roots is shown to be stimulated 3- to 4-fold by the addition of lysophosphatidylcholine (lysoPC). This effect clearly differs from that of other detergents by both the magnitude and the absence of inhibition at higher concentrations. LysoPC decreases the apparent Km for MgATP, increases Vmax of the ATPase reaction but does not change its pH optimum. On the contrary, the acid phosphatase activity associated with plasma membranes is not influenced by lysoPC. A lysoPC stimulation is also demonstrated for the solubilized preparation of the H(+)-ATPase. It is assumed that lysoPC stimulation of the plant plasma membrane H(+)-ATPase is not only due to permeabilization of the vesicles for MgATP, but also to direct action on the enzyme.  相似文献   

5.
The lipid composition of a plasma membrane enriched fraction isolated from corn (Zea mays) roots was examined. On a wt basis, the lipid: protein ratio was 1.11. Phospholipids comprised 60% of total lipids with the major phospholipids being phosphatidylcholine (62%) and phosphatidylethanolamine (21%). Free sterol was the major neutral lipid. The sterol:phospholipid molar ratio was 0.31. The fatty acid composition of the membrane was predominantly linoleic (60%) and palmitic (30%).  相似文献   

6.
The K(+)-stimulated ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 x Mo 17) by solubilization with 30 millimolar octyl-beta-d-glucopyranoside followed by precipitation with dilute ammonium sulfate. The specific activity of the enzyme was increased about five times by this procedure. The molecular weight of the detergent-extracted ATPase complex was estimated to be at least 500,000 daltons by chromatography on a Bio-Gel A-5m column. Negative staining electron microscopy indicated that the detergent-extracted material consisted of amorphous particles, while the ammonium sulfate precipitate was composed of uniform vesicles with an average diameter of 100 nanometers. The protein composition of the ammonium sulfate precipitate was significantly different from that of the plasma membrane fraction when compared by sodium dodecyl sulfate gel electrophoresis. The characteristics of the partially purified ATPase resembled those of the plasma membrane associated enzyme. The ATPase required Mg(2+), was further stimulated by K(+), was almost completely inhibited by 0.1 millimolar diethylstilbestrol, and was not affected by 5.0 micrograms per milliliter oligomycin. Although the detergents sodium cholate, deoxycholate, Triton X-100 and Lubrol WX also solubilized some membrane protein, none solubilized the K(+)-stimulated ATPase activity. Low concentrations of each detergent, including octyl-beta-d-glucopyranoside, activated the ATPase and higher concentrations inactivated the enzyme. These results suggest that the plasma membrane ATPase is a large, integral membrane protein or protein complex that requires lipids to maintain its activity.  相似文献   

7.
8.
Phospholipid polar head group and fatty acid composition were determined for plasma membrane enriched fractions from developing soybean root (Glycine max [L.] Merr. cult. Wells II). Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots at pH 7.8 and in the presence of 5 millimolar ethylenediaminetetraacetate, 5 millimolar ethyleneglycol-bis (β-aminoethyl ether)N,N tetraacetic acid, and 10 millimolar NaF. Lipid extracts analyzed for phospholipid composition revealed two major phospholipid components: phosphatidylcholine and phosphatidylethanolmine. Minor phospholipid components identified were phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, and diphosphatidylglycerol. Lipid degradation by endogenous phospholipase D during membrane isolation at pH 6.5 and in the absence of chelating agents and NaF resulted in the recovery of large amounts of phosphatidic acid. Phosphatidylcholine was the principal substrate for phospholipase D.  相似文献   

9.
Abstract. An investigation has been made of methods for isolating membrane vesicles from corn ( Zea mays L.) roots active in calcium transport and K+-stimulated ATPase. Pretreating and grinding the roots at room temperature with EGTA and fusicoccin increases basal ATPase activity. Improvement in Ca2+ uptake requires isolation of a scaled vesicle fraction by the method of Sze(1980). Sorbitol is superior to sucrose as an osmoticant. The pH optimum for Ca2+ uptake is 7.5. whereas that for associated ATPase activity is 6.5. Calmodulin strongly stimulates Ca2+ uptake in a process little affected by uncouplers and ATPase inhibitors, but blocked by chlorpromazine. Fusicoccin gives less stimulation of Ca2+ uptake which is sensitive to uncouplers, and is dependent upon isolation with fusicoccin present. It appears that the sealed vesicle fraction may possess two Ca2+ transport systems: a calmodulin-activated Ca2+-transporting ATPase, and a Ca2+/H+ antiport coupled through the protonmotive force to a fusicoccin-stimulated H+-ATPase.  相似文献   

10.
A plasma membrane fraction was isolated from calf thymocytes by a modification of the method of Wallach and Kamat (Wallach, D. F. H. and Kamat, V. B. (1966) in Methods in Enzymology) (Colowick, S. P. and Kaplan, N. O., eds), Vol. 8, pp. 164–172, Academic Press, New York). Fractions were examined electron microscopically and subjected to chemical and enzymic assays.With respect to the cell homogenate and the final microsomal fraction, respectively, the plasma membrane fraction was enriched by a factor 23 and 5.1 in cholesterol, 11 and 2.4 in phospholipid, 5.1 and 4.2 in sialic acid, 20 and 5.2 in Mg2+-ATPase (EC 3.6.1.3), and 8 and 2.6 in 5′-nucleotidase (EC 3.1.3.5). Succinate:cytochrome c oxidoreductase (EC 1.3.99.1) was lacking, and DNA was hardly if at all present in the plasma membrane fraction. The major part of the RNA found in this fraction (30 μg · mg?1 protein) was concluded to be an authentic component of the plasma membrane.The concept of membrane “markers” was briefly considered and the conclusion was reached that by current criteria and electron microscopic evidence the plasma membrane fraction obtained from calf thymocytes consisted of reasonably clean plasma membranes.  相似文献   

11.
A. Belver  R. L. Travis 《Protoplasma》1990,155(1-3):76-84
Summary The short-term effects of NaCl and mannitol stress on plasma membrane (PM) polypeptides from corn roots (Zea mays L.) were determined using two-dimensional gel electrophoresis following radiolabeled amino acid incorporation. After 2.5 hours, both stress treatments altered synthesis of several polypeptides. Changes included up-regulation of some polypeptides with concomitant down-regulation of others. Some changes were unique to the stress treatment while others were common to both NaCl and mannitol. No new polypeptides appeared in either case. Pulse-chase experiments following 0.5-hours and 2.5-hours incubation periods with radiolabeled amino acids did not reveal differences in turnover of PM polypeptides. The results support the contention that altered synthesis of PM proteins under stress may contribute to the alteration of membrane function.Abbreviations ER endoplasmic reticulum: GA Golgi - PM plasma membrane - PVPP polyvinylpolypyrrolidone  相似文献   

12.
13.
14.
A new procedure for large-scale preparation of plasma-membrane-bound ATPase from Saccharomyces cerevisiae is described. The crude membrane fraction is purified by selective extraction with three successive detergents: deoxycholate (0.25 mg/mg protein), Triton X-100 (0.25%) and lysophosphatidylcholine (1 mg/mg protein). These treatments extract the mitochondria and strip the plasma membrane. From 1 kg commercial baker's yeast, 200 mg of plasma membrane proteins are isolated in 2--3 days. Plasma-membrane-bound ATPase of specific activity of 10--13 mumol Pi x min-1 x mg protein-1 is obtained with a yield estimated to 60%. Dodecylsulfate/polyacrylamide gel electrophoresis shows three predominant polypeptides of Mr = 95000, 70000 and 56000 in the purified membrane fraction. The major polypeptide of Mr = 95000 identified as the ATPase subunit is phosphorylated by millimolar concentrations of ATP. The phosphorylated intermediate reaches the steady-state level in less than 100 ms and turns over very rapidly. It is hydrolyzed by hydroxylamine. Its formation is prevented by the ATPase inhibitors vanadate and Dio-9, a plasma-membrane ATPase inhibitor of unknown structure. At least four other membrane proteins are phosphorylated with much slower kinetics, presumably through the action of protein-kinase(s).  相似文献   

15.
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.Abbreviations L1 first lower phase - NR nitrate reductase - NRA nitrate-reductase activity - PM plasma membrane - T:p Triton X-100 (octylphenoxy polyethoxyethanol) to protein ratio - U2 second upper phase  相似文献   

16.
Liver plasma membranes virtually free of contaminating mitochondria have been prepared. Sodium dodecylsulfate-polyacrylamide gel electrophoresis reveals a membrane protein resistant to papain digestion in the intact membranes but readily hydrolyzed in membranes disrupted by detergent or sonication.Electron microscopy of mechanically deformed membranes reveals fibrils within the membrane which appear to be protein in nature but which also persist in papain digested membranes.  相似文献   

17.
Immuno-isolation of a plasma membrane fraction from the Fao cell.   总被引:3,自引:0,他引:3       下载免费PDF全文
A plasma membrane was immuno-isolated from a post-nuclear supernatant of a cultured rat hepatocyte, the Fao cell, using a cellulose immuno-adsorbent and antibodies raised against a variety of endogenous antigens of hepatocytes: 5'-nucleotidase, a plasma membrane fraction and the whole Fao cell. The antibodies which recognize antigens on the cell surface were selected from the total serum by first binding the antiserum to suspension cells. Alternatively, the plasma membrane and Fao antisera were affinity purified on a column prepared from a Triton X-114 extract of a plasma membrane fraction. The immuno-isolation was most efficient when carried out with either the plasma membrane or the Fao anti-serum. When alkaline phosphodiesterase I or 5'-nucleotidase was used as the plasma membrane marker, 40-60% of the plasma membrane of the post-nuclear supernatant was isolated representing a maximum 34-fold increase in the specific activity of the enzymes in the bound material. Using the NaB-[3H]4-labelled glycoproteins of the plasma membrane or the IgG bound to the plasma membrane as alternative markers, an 80% isolate of the plasma membrane of the post-nuclear supernatant was achieved, resulting in an estimated 40-fold purification. The non-specific binding was low despite the use of a post-nuclear supernatant as the input fraction. The characterization of the bound materials suggested that the whole plasma membrane was immuno-isolated and not a particular domain.  相似文献   

18.
—A method is described for the fractionation of bulk isolated oligodendroglial cells from calf brain to produce both a plasma membrane and an attached myelin fraction. The cells are homogenized in a sucrose solution containing Mg2+ and K+ at a pH of 6·5. Crude membrane fractions are obtained from this homogenate by discontinuous sucrose density gradient centrifugation. After being subjected to osmotic shock, these fractions are purified by continuous sucrose density gradient centrifugation. The plasma membrane fraction, which bands at 1·0 m -sucrose, was identified by its morphology and enzyme content. Electron microscopy showed it to be a homogeneous preparation of vesicles composed, for the most part, of smooth trilaminar membranes. Enzymatic analysis revealed the presence of high specific activities of Na+, K+-ATPase, 5′-nucleotidase and 2′,3′-cyclic AMPase. Lipid analysis showed a higher galactolipid and lower phospholipid content than has been reported for neuronal and synaptic membranes. The attached myelin fraction, which bands at 0·7 m -sucrose has the typical multilamellar appearance of myelin, but differs considerably from normal myelin in having high concentrations of plasma membrane marker enzymes, and a lipid composition intermediate between normal myelin and the plasma membrane fraction. The ganglioside content and protein patterns of these fractions have also been examined.  相似文献   

19.
20.
Partially purified liver plasma membranes were fractionated further on sucrose layers. Three membrane populations, numbered Peaks 1, 2 and 3, were isolated at densities of 1.23, 1.16, and 1.03, respectively. Peaks 1 and 2 were enriched to a similar degree in 5′-nucleotidase activity, a plasma membrane marker, relative to membranes in Peak 3. Electron micrographs indicated that Peak 1 possessed desmosomes and bile canaliculi, while Peak 2 contained large vesicles as well as smaller vesicular structures attached to membranes. The latter have been attributed to hepatocyte sinusoidal surfaces. All three membrane fractions contained adenylate cyclase activity with the highest specific activity found in Peak 2. The enzyme in all three peaks was F sensitive with higher sensitivity in Peaks 1 and 2. Glucagon sensitivity of adenylate cyclase in Peak 2 membranes was four times that of Peak 1. Only Peak 2 membranes were sensitive to epinephrine. The Peak 2 membranes were three times more sensitive to glucagon than the partially purified membranes from which they were derived. These findings indicate that, while both bile canalicular and sinusoidal faces of hepatocytes possess adenylate cyclase, the sinusoidal fraction is more sensitive to glucagon. Solubilized adenylate cyclase of the Peak 2 membranes, obtained as the 165,000g supernate of membranes treated with Lubrol-PX, was sensitive to stimulation by guanyl nucleotide analogs. Guanyl nucleotide sensitivity thus resides in the catalytic site and is not dependent on membrane integrity. All three membrane fractions possessed similar activities of nucleotide phosphohydrolase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号