首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have investigated determinants of polyhead formation in bacteriophage P22 in order to understand the molecular mechanism by which coat protein assembly goes astray. Polyhead assembly is caused by amino acid substitutions in coat protein at position 170, which is located in the β‐hinge. In vivo scaffolding protein does not correct polyhead assembly by F170A or F170K coat proteins, but does for F170L. All F170 variants bind scaffolding protein more weakly than wild‐type as observed by affinity chromatography with scaffolding protein‐agarose and scaffolding protein shell re‐entry experiments. Electron cryo‐microscopy and three‐dimensional image reconstructions of F170A and F170K empty procapsid shells showed that there is a decreased flexibility of the coat subunits relative to wild‐type. This was confirmed by limited proteolysis and protein sequencing, which showed increased protection of the A‐domain. Our data support the conclusion that the decrease in flexibility of the A‐domain leads to crowding of the subunits at the centre of the pentons, thereby favouring the hexon configuration during assembly. Thus, correct coat protein interactions with scaffolding protein and maintenance of sufficient coat protein flexibility are crucial for proper P22 assembly. The coat protein β‐hinge region is the major determinant for both features.  相似文献   

3.
In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.  相似文献   

4.
An in vitro assembly system was developed to study prolate capsid assembly of phage ?29 biochemically, and to identify regions of scaffolding protein required for its functions. The crowding agent polyethylene glycol can induce bacteriophage ?29 monomeric capsid protein and dimeric scaffolding protein to co-assemble to form particles which have the same geometry as either prolate T=3 Q=5 procapsids formed in vivo or previously observed isometric particles. The formation of particles is a scaffolding-dependent reaction. The balance between the fidelity and efficiency of assembly is controlled by the concentration of crowding agent and temperature. The assembly process is salt sensitive, suggesting that the interactions between the scaffolding and coat proteins are electrostatic. Three N-terminal ?29 scaffolding protein deletion mutants, Delta 1-9, Delta 1-15 and Delta 1-22, abolish the assembly activity. Circular dichroism spectra indicate that these N-terminal deletions are accompanied by a loss of helicity. The inability of these proteins to dimerize suggests that the N-terminal region of the scaffolding protein contributes to the dimer interface and maintains the structural integrity of the dimeric protein. Two C-terminal scaffolding protein deletion mutants, Delta 79-97 and Delta 62-97, also fail to promote assembly. However, the secondary structure and the dimerization ability of these mutants are unchanged relative to wild-type, which suggests that the C terminus is the likely site of interaction with the capsid protein.  相似文献   

5.
Burch AD  Fane BA 《Journal of virology》2000,74(20):9347-9352
Viral assembly is an ideal system in which to investigate the transient recognition and interplay between proteins. During morphogenesis, scaffolding proteins temporarily associate with structural proteins, stimulating conformational changes that promote assembly and inhibit off-pathway reactions. Microviridae morphogenesis is dependent on two scaffolding proteins, an internal and an external species. The external scaffolding protein is the most conserved protein within the Microviridae, whose canonical members are phiX174, G4, and alpha3. However, despite 70% homology on the amino acid level, overexpression of a foreign Microviridae external scaffolding protein is a potent cross-species inhibitor of morphogenesis. Mutants that are resistant to the expression of a foreign scaffolding protein cannot be obtained via one mutational step. To define the requirements for and constraints on scaffolding protein interactions, chimeric external scaffolding proteins have been constructed and analyzed for effects on in vivo assembly. The results of these experiments suggest that at least two cross-species inhibitory domains exist within these proteins; one domain most likely blocks procapsid formation, and the other allows procapsid assembly but blocks DNA packaging. A mutation conferring resistance to the expression of a chimeric protein (chiD(r)) that inhibits DNA packaging was isolated. The mutation maps to gene A, which encodes a protein essential for packaging. The chiD(r) mutation confers resistance only to a chimeric D protein; the mutant is still inhibited by the expression of foreign D proteins. The results presented here demonstrate how closely related proteins could be developed into antiviral agents that specifically target virion morphogenesis.  相似文献   

6.
7.
Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter ≈ 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibrium (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.  相似文献   

8.
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site.  相似文献   

9.
10.
Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particles. In contrast, X174 morphogenesis proceeds through at least three preprocapsid intermediates, which can be biochemically isolated. This affords a detailed analysis of early morphogenesis and internal scaffolding protein function. Amino acid substitutions were generated for the six C-terminal, aromatic amino acids that mediate most coat-internal scaffolding protein contacts. The biochemical characterization of mutant assembly pathways revealed two classes of molecular defects, protein binding and conformational switching, a novel phenotype. The conformational switch mutations kinetically trapped assembly intermediates before procapsid formation. Although mutations trapped different particles, they shared common second-site suppressors located in the viral coat protein. This suggests a fluid assembly pathway, one in which the scaffolding protein induces a single, coat protein conformational switch and not a series of sequential reactions. In this model, an incomplete or improper switch would kinetically trap intermediates.  相似文献   

11.
Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically developed to analyze assembly of spherical viruses. Phage P22 procapsids are the product of the co-assembly of 420 molecules of coat protein and approximately 100-300 molecules of scaffolding protein. Scaffolding protein serves as an assembly chaperone and is not part of the final mature capsid, but is essential for proper procapsid assembly. Here we show that scaffolding protein also affects the thermodynamics of assembly, and for the first time this quantitative analysis has been performed on a virus composed of more than one type of protein subunit. Purified coat and scaffolding proteins were mixed in varying ratios in vitro to form procapsids. The reactions were allowed to reach equilibrium and the proportion of the input protein assembled into procapsids or remaining as free subunits was determined by size exclusion chromatography and SDS-PAGE. The results were used to calculate the free energy contributions for individual coat and scaffolding proteins. Each coat protein subunit was found to contribute -7.2(+/-0.1)kcal/mol and each scaffolding protein -6.1(+/-0.2)kcal/mol to the stability of the procapsid. Because each protein interacts with two or more neighbors, the pair-wise energies are even less. The weak protein interactions observed in the assembly of procapsids are likely important in the control of nucleation, since an increase in affinity between coat and scaffolding proteins can lead to kinetic traps caused by the formation of too many nuclei. In addition, we find that adjusting the molar ratio of scaffolding to coat protein can alter the assembly product. When the scaffolding protein concentration is low relative to coat protein, there is a correspondingly low yield of proper procapsids. When the relative concentration is very high, too many nuclei form, leading to kinetically trapped assembly intermediates.  相似文献   

12.
13.
S Casjens  M B Adams  C Hall    J King 《Journal of virology》1985,53(1):174-179
In the assembly of bacteriophage P22, precursor particles containing two major proteins, the gene 5 coat protein and the gene 8 scaffolding protein, package the DNA molecule. During the encapsidation reaction all of the scaffolding protein molecules are released intact and subsequently participate in further rounds of DNA encapsidation. We have previously shown that even though it lies in the center of the late region of the genetic map, the scaffolding protein gene is not always expressed coordinately with the remainder of the late proteins and that some feature of the phage assembly process affects its expression. We present here in vivo experiments which show that there is an inverse correlation between the amount of unassembled scaffolding protein and the rate of scaffolding protein synthesis and that long amber fragments of the scaffolding protein can turn down the synthesis of intact scaffolding protein in trans. These results support a model for scaffolding protein regulation in which the feature of the assembly process which modulates the rate of scaffolding protein synthesis is the amount of unassembled scaffolding protein itself.  相似文献   

14.
An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.  相似文献   

15.
Werner syndrome is a rare autosomal recessive disease characterized by a premature aging phenotype, genomic instability, and a dramatically increased incidence of cancer and heart disease. Mutations in a single gene encoding a 1432-amino acid helicase/exonuclease (hWRN) have been shown to be responsible for the development of this disease. We have cloned, overexpressed, and purified a minimal, 171-amino acid fragment of hWRN that functions as an exonuclease. This fragment, encompassing residues 70-240 of hWRN (hWRN-N(70-240)), exhibits the same level of 3'-5' exonuclease activity as the previously described exonuclease fragment encompassing residues 1-333 of the full-length protein. The fragment also contains a 5'-protruding DNA strand endonuclease activity at a single-strand-double-strand DNA junction and within single-stranded DNA, as well as a 3'-5' exonuclease activity on single-stranded DNA. We find hWRN-N(70-240) is in a trimer-hexamer equilibrium in the absence of DNA when examined by gel filtration chromatography and atomic force microscopy. Upon addition of DNA substrate, hWRN-N(70-240) forms a hexamer and interacts with the recessed 3'-end of the DNA. Moreover, we find that the interaction of hWRN-N(70-240) with the replication protein PCNA also causes this minimal, 171-amino acid exonuclease region to form a hexamer. Thus, the active form of this minimal exonuclease fragment of human WRN appears to be a hexamer. The implications these results have on our understanding of hWRN's roles in DNA replication and repair are discussed.  相似文献   

16.
17.
The assembly of the precursor shells of bacteriophage P22 entails the co-polymerization of gene 5 coat protein with gene 8 scaffolding protein into double shell structures. During DNA encapsidation, the inner shell of scaffolding molecules dissociates and exits from the prohead. These molecules then recycle, catalyzing the assembly of newly synthesized coat protein to form new proheads (King and Casjens, 1974).Although gene 5 and gene 8 are adjacent on the phage chromosome, we find that the synthesis of the two proteins is differentially regulated. In productively infected cells, scaffolding protein is synthesized at a low rate relative to the coat protein. In contrast, cells that are infected with mutants blocked in DNA packaging and accumulate precursor shells synthesize scaffolding protein at a much higher rate. If a mutation is introduced into the coat protein gene, however, preventing shell assembly, the rate of scaffolding protein synthesis decreases to less than the wild-type rate.The experiments are consistent with models in which either continued synthesis of scaffolding protein depends upon co-polymerization with coat subunits, or soluble scaffolding subunits (but not assembled subunits) depress their own further synthesis. The finding that amber fragments of the scaffolding protein are synthesized at a very low rate is inconsistent with the second model. There is evidence, however, that fragments of the protein may have regulatory activity.The regulatory circuit couples scaffolding protein synthesis to morphogenesis. Gene dosage experiments show that regulation results in the maintenance of coat and scaffolding subunits in the proper ratio for shell assembly.  相似文献   

18.
Assembly of certain classes of bacterial and animal viruses requires the transient presence of molecules known as scaffolding proteins, which are essential for the assembly of the precursor procapsid. To assemble a procapsid of the proper size, each viral coat subunit must adopt the correct quasiequivalent conformation from several possible choices, depending upon the T number of the capsid. In the absence of scaffolding protein, the viral coat proteins form aberrantly shaped and incorrectly sized capsids that cannot package DNA. Although scaffolding proteins do not form icosahedral cores within procapsids, an icosahedrally ordered coat/scaffolding interaction could explain how scaffolding can cause conformational differences between coat subunits. To identify the interaction sites of scaffolding protein with the bacteriophage P22 coat protein lattice, we have determined electron cryomicroscopy structures of scaffolding-containing and scaffolding-lacking procapsids. The resulting difference maps suggest specific interactions of scaffolding protein with only four of the seven quasiequivalent coat protein conformations in the T = 7 P22 procapsid lattice, supporting the idea that the conformational switching of a coat subunit is regulated by the type of interactions it undergoes with the scaffolding protein. Based on these results, we propose a model for P22 procapsid assembly that involves alternating steps in which first coat, then scaffolding subunits form self-interactions that promote the addition of the other protein. Together, the coat and scaffolding provide overlapping sets of binding interactions that drive the formation of the procapsid.  相似文献   

19.
Neuronal and oligodendrocytic aggregates of fibrillar alpha-synuclein define several diseases of the nervous system. It is likely that these inclusions impair vital metabolic processes and compromise viability of affected cells. Here, we report that a 12-amino acid stretch ((71)VTGVTAVAQKTV(82)) in the middle of the hydrophobic domain of human alpha-synuclein is necessary and sufficient for its fibrillization based on the following observations: 1) human beta-synuclein is highly homologous to alpha-synuclein but lacks these 12 residues, and it does not assemble into filaments in vitro; 2) the rate of alpha-synuclein polymerization in vitro decreases after the introduction of a single charged amino acid within these 12 residues, and a deletion within this region abrogates assembly; 3) this stretch of 12 amino acids appears to form the core of alpha-synuclein filaments, because it is resistant to proteolytic digestion in alpha-synuclein filaments; and 4) synthetic peptides corresponding to this 12-amino acid stretch self-polymerize to form filaments, and these peptides promote fibrillization of full-length human alpha-synuclein in vitro. Thus, we have identified key sequence elements necessary for the assembly of human alpha-synuclein into filaments, and these elements may be exploited as targets for the design of drugs that inhibit alpha-synuclein fibrillization and might arrest disease progression.  相似文献   

20.
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号