首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of abscisic acid (ABA) in the signal transduction pathway associated with NaCl-induced up-regulation of antioxidant enzyme activity was examined in a NaCl-tolerant cotton callus cell line treated with NaCl, ABA, paraquat, or H2O2 in the presence and absence or fluridone, an inhibitor of terpene, and therefore, ABA synthesis. Treatment with NaCl resulted in a rapid increase (within 30 minutes) in the ABA levels of the callus tissue, and the NaCl, ABA, and paraquat treatments induced rapid increases in the activities of superoxide dismutase, catalase, peroxidase, and glutathione reductase. Pre-treatment with fluridone significantly suppressed the NaCl-induced increases, but only slightly delayed the increases in tissue subjected to exogenous ABA treatment. This implies that ABA is involved in the signal transduction pathway associated with the NaCl-induced up-regulation of these antioxidant enzymes. Pre-treatment with fluridone had no effect on the paraquat-induced increases, suggesting that these enzymes can also be up-regulated by a pathway other than the one mediated by ABA. Both the NaCl and paraquat treatments produced significant increases in the superoxide levels within the callus, but the increase resulting from the paraquat treatment was significantly higher than the increase resulting from the NaCl treatment. These data suggest that NaCl stress results in the production of reactive oxygen intermediates (ROI) which signals the induction of an ABA-dependent signaling pathway. The production of very high levels of ROI, such as those that occur with paraquat treatment or perhaps during periods of prolonged or extreme stress, may induce an ABA-independent signaling pathway.  相似文献   

3.
The role of abscisic acid (ABA) in the signal transduction pathway associated with NaCl-induced up-regulation of antioxidant enzyme activity was examined in a NaCl-tolerant cotton callus cell line treated with NaCl, ABA, paraquat, or H2O2 in the presence and absence or fluridone, an inhibitor of terpene, and therefore, ABA synthesis. Treatment with NaCl resulted in a rapid increase (within 30 minutes) in the ABA levels of the callus tissue, and the NaCl, ABA, and paraquat treatments induced rapid increases in the activities of superoxide dismutase, catalase, peroxidase, and glutathione reductase. Pre-treatment with fluridone significantly suppressed the NaCl-induced increases, but only slightly delayed the increases in tissue subjected to exogenous ABA treatment. This implies that ABA is involved in the signal transduction pathway associated with the NaCl-induced up-regulation of these antioxidant enzymes. Pre-treatment with fluridone had no effect on the paraquat-induced increases, suggesting that these enzymes can also be up-regulated by a pathway other than the one mediated by ABA. Both the NaCl and paraquat treatments produced significant increases in the superoxide levels within the callus, but the increase resulting from the paraquat treatment was significantly higher than the increase resulting from the NaCl treatment. These data suggest that NaCl stress results in the production of reactive oxygen intermediates (ROI) which signals the induction of an ABA-dependent signaling pathway. The production of very high levels of ROI, such as those that occur with paraquat treatment or perhaps during periods of prolonged or extreme stress, may induce an ABA-independent signaling pathway.  相似文献   

4.
Summary To determine NaCl effects on callus growth and antioxidant activity, callus of a salt-tolerant and a salt-sensitive cultivar of cotton was grown on media amended with 0, 75, and 150 mM NaCl. Callus of the salt-tolerant cultivar, Acala 1517-8 8, grown at 150 mM NaCl, showed significant increases in superoxide dismutase, catalase, ascorbate peroxidase, peroxidase and glutathione reductase activities compared to callus tissue grown at 0 mM NaCl. In contrast, callus tissue of the salt-sensitive cultivar, Deltapine 50, grown at 0, 75, and 150 mM NaCl, showed no difference in the activities of these enzymes. At the 150 mM NaCl treatment, peroxidase was the only antioxidant enzyme from Deltapine 50 with an activity as high as that observed in Acala 1517-88. The NaCl-induced increase in the activity of these enzymes in Acala 1517-88 indicates that callus tissue from the more salt-tolerant cultivar has a higher capacity for scavenging and dismutating superoxide, an increased ability to decompose H2O2, and a more active ascorbate-glutathione cycle when grown on media amended with NaCl.  相似文献   

5.
The roles of superoxide and NO in the NaCl-induced upregulation on antioxidant enzyme activity were investigated in NaCl-tolerant cotton calli. Both NaCl and paraquat treatments resulted in significant increases in superoxide production. The activities of ascorbate peroxidase (APX), catalase, glutathione reductase (GR), and peroxidase also increased significantly within 2 h after applying the stress. Pre-treatment with the superoxide scavenger, N-acetyl l-cysteine (NAC), completely removed the superoxide and inhibited the upregulation of antioxidant enzyme activity in the tissue treated with either NaCl or paraquat. NaCl stress also resulted in a significant increase in the NO level. Experiments were also carried out to measure antioxidant enzyme activity in cotton calli exposed to NO, the NO producer sodium nitroprusside (SNP), and the NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO) under different salt stress conditions. The direct addition of NO gas produced no change in the activities of catalase and GR and caused a significant decrease in APX activity when compared to the controls. When the calli was treated with SNP in the absence of NaCl stress, APX and GR activities decreased significantly and catalase activity was only slightly higher than the control. Treatment with SNP in the presence of NaCl stress resulted in a significant decrease in APX activity, and GR and APX activities were not significantly different from those observed in the NaCl treatment alone. In the presence of PTIO, the activities of all three enzymes increased in the presence or absence of NaCl stress. These results suggest that reactive oxygen species (ROS) such as superoxide radicals may serve as signal transduction molecules to switch “on” the early NaCl-induced up-regulation of antioxidant enzyme activity, while NO may play a role in switching “off” the response after other mechanisms in the cascade of events responsible for NaCl tolerance have been activated.  相似文献   

6.
Plants were regenerated successfully through shoot organogenesis of a NaCl-selected callus line of Chrysanthemum morifolium Ramat. cv. Maghi Yellow (a salt sensitive cultivar), developed through stepwise increase in NaCl concentration (0-100mM) in the MS medium. The stepwise increase in NaCl concentration from a relatively low level to cytotoxic level was found to be a better way to isolate NaCl-tolerant callus line, since direct transfer of callus to high saline medium was detrimental to callus survival and growth. The selected callus line exhibited significant increase in superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities compared to control callus (grown in medium devoid of NaCl). Stability of salt tolerance character of the selected callus line was checked by growing the calli in NaCl-free medium for 3 consecutive months followed by re-exposure to higher salinity stress (120mM NaCl). Among different growth regulator treatments, a combination of 5mgl(-1) TDZ (Thidiazuron) along with 0.25mgl(-1) NAA and 0.5mgl(-1) GA(3) was found to be the most effective for shoot organogenesis in selected callus line. The regeneration potential of the NaCl-tolerant callus ranged from 20.8% to 0% against 62.4% to 0% in control callus line. Under elevated stress condition (medium supplemented with 250mM NaCl), selected calli derived regenerants (S1 plants) exhibited significantly higher SOD and APX activities over both PC (positive control: control callus derived plants grown on MS medium devoid of NaCl) and NC (negative control: control callus derived plants subjected to 250mM NaCl stress) plants. In addition, the NC plants showed stunted growth, delayed root initiation, and had lesser number of roots as compared to S1 plants. Based on growth performance and antioxidant capacity, the S1 plants could be considered as NaCl-tolerant line showing all positive adaptive features towards the salinity stress. Further study on agronomic performance of these S1 plants under saline soil condition need to be undertaken to check the genetic stability of the induced salt-tolerance.  相似文献   

7.
A cotton (Gossypium hirsutum L.) control and NaCl-tolerant cell line (cv Coker 312) were grown on media with or without NaCl in the presence or absence of paraquat, buthionine sulfoximine, and oxidized glutathione. On medium with 150 mM NaCl the NaCl-tolerant cell line exhibited no reduction in growth, whereas a 96% reduction was observed in the control line. The NaCl-tolerant cell line that was grown on 150 mM NaCl exhibited significantly greater catalase (341%), peroxidase (319%), glutathione reductase (287%), ascorbate peroxidase (450%), [gamma]-glutamylcysteine synthetase (224%), and glutathione S-transferase (500%) activities than the intolerant control. The NaCl-tolerant cell line had a significantly lower dehydroascorbic acid/ascorbic acid ratio. Paraquat reduced growth by 20 and 53.7%, respectively, in the NaCl-tolerant and control cell line. The NaCl-tolerant cell line also showed a slight tolerance to buthionine sulfoximine. In the buthionine sulfoximine experiments reduced glutathione restored growth in both cell lines, whereas oxidized glutathione restored growth only in the NaCl-tolerant cell line. These data indicate that the NaCl-tolerant cell line exhibited a cross-tolerance to a variety of stress variables and had a more active ascorbate-glutathione cycle.  相似文献   

8.
Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. The effect of NaCl stress on growth, ion accumulation, contents of protein, proline, and antioxidant enzymes activity in callus cultures of J. curcas was investigated. Exposure of callus to NaCl decreased growth in a concentration dependent manner. NaCl treated callus accumulated Na and declined in K, Ca and Mg contents. Na/K ratio increased steadily as a function of external NaCl treatment. NaCl induced significant differences in quality and quantity of proteins, whereas, proline accumulation remained more or less constant with treatment. NaCl stress enhanced the activity of superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7). Further in the isoenzyme studies, four SOD isoenzymes (SOD 1, 2, 3, and 4) and two POX isoenzymes (POX 1 and 2) were detected with the treatment. NaCl strongly induced activity of SOD 4 isoenzyme in 40, 60, 80 mM and POX 2 isoenzyme in 40 and 80 mM NaCl concentrations. Increase in antioxidant enzymes activity could be a response to cellular damage induced by NaCl. This increase could not stop the deleterious effects of NaCl, but it reduced stress severity and thus allowed cell growth to occur.  相似文献   

9.
Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g?1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.  相似文献   

10.
A NaCl-tolerant callus line of Cicer arietinum has been isolated, as a spontaneous variant, on agar-solidified MS-medium supplemented with 100 mM NaCl. The growth of this line, in the presence of 100 mM NaCl, was comparable to that of the NaCl-sensitive callus line growing in the absence of NaCl. Regarding relative tolerance of the two callus lines towards NaCl (0 to 200 mM), the tolerant line performed poorly in the absence of NaCl and exhibited optimal growth at 50 mM NaCl. The tolerance persisted even after three passages of 4-wk each, tested so far, away from the selective agent.  相似文献   

11.
The present study was conducted to evaluate the effect of NaCl on growth and some key antioxidants in chickpea. Eight genotypes of chickpea were grown hydroponically for 15 days and then treated with different concentrations of salt [0 mM (T0), 25 mM (T1), 50 mM (T2), 75 mM (T3), and 100 mM (T4)]. Salinity showed marked changes in growth parameters (fresh and dry weight of root and shoot). The level of lipid peroxidation was measured by estimating malondialdehyde content. Lipid peroxidation increases with the increase in NaCl concentration in all genotypes but salt-tolerant genotypes (SKUA-06 and SKUA-07) were least affected as compared to other genotypes. The chlorophyll content was also affected with elevated levels of NaCl. Increased concentration of salt increased the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase in all chickpea genotypes but maximum activity was observed in salt-tolerant (SKUA-06 and SKUA-07) genotypes. Two genotypes of salt-tolerant and salt-sensitive varieties were analyzed further by real time PCR which revealed that the expression of SOD, APX and CAT genes were increased by NaCl in the salt-tolerant variety. The enhancement in tolerance against salt stress indicates that the genes involved in the antioxidative process are triggered by oxidative stress induced by environmental change. The results indicate that NaCl-induced oxidative stress hampers the normal functioning of the cell. The efficient antioxidants play a great role in mitigating the effect of NaCl stress in chickpea. This screening of NaCl-tolerant genotypes of chickpea can be performed on salt-affected land.  相似文献   

12.
Ascorbic acid (AsA) is naturally occurring compound with antioxidant activity and plays a pivotal role in plant cell adaptation to salinity stress. The objective of this work was to assess the influence of exogenous AsA on the embryogenic callus of indica rice (Oryza sativa L.) cv. MRQ74 cultivated under saline conditions. NaCl (200 mM) decreased callus fresh and dry masses, relative growth rate, and K+ and Ca+2 content, and increased Na+ content and Na+/K+ ratio. Application of AsA (0.5 or 1 mM) alleviated these effects of salinity. Activities of peroxidase, catalase, superoxide dismutase, as well as content of proline increased due to the NaCl treatment, and these parameters were mostly further increased by 0.5 mM AsA. Thus, AsA can increase callus tolerance to NaCl stress.  相似文献   

13.
Catharanthus roseus (L.) G. Don. plants were grown with NaCl and CaCl2 in order to study the effect of CaCl2 on NaCl-induced oxidative stress in terms of lipid peroxidation (TBARS content), H2O2 content, osmolyte concentration, proline (PRO)-metabolizing enzymes, antioxidant enzyme activities, and indole alkaloid accumulation. The plants were treated with solutions of 80 mM NaCl, 80 mM NaCl with 5 mM CaCl2 and 5 mM CaCl2 alone. Groundwater was used for irrigation of control plants. Plants were uprooted randomly on 90 days after sowing (DAS). NaCl-stressed plants showed increased TBARS, H2O2, glycine betaine (GB) and PRO contents, decreased proline oxidase (PROX) activity, and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl2 to NaCl-stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl2 appears to confer greater osmoprotection by the additive role with NaCl in GB accumulation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased under salinity and further enhanced due to CaCl2 treatment. The NaCl-with-CaCl2-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to NaCl-treated and untreated plants.  相似文献   

14.
Cell lines able to grow on media containing 50, 100, 150 or 200 mM NaCl were established from potato callus cultures by direct recurrent selection or gradual selection. In callus subjected to direct selection only small clusters of cells survived on medium with 150 or 200 mM NaCl, whereas on 100 mM small cell portions appear necrotic. When cell lines were obtained by successive subcultures on media with increased concentrations of NaCl, salt-tolerant calli were more compact and developed a greenish colour free from necrotic areas. The response of calli lines grown on media with NaCl was compared to control line. The NaCl-tolerant calli showed a decrease in relative growth rate and water content, with higher reductions in the 150 mM tolerant callus. Lipid peroxidation was increased in 50 mM and 100 mM NaCl-tolerant calli, while in 150 mM tolerant callus remained similar to 100 mM values. There was a significant increase in ascorbic acid content in 100 mM and 150 mM NaCl-tolerant calli as compared to the 50 mM, that was two-fold the value found in the control. Also, the contents of soluble and insoluble proteins increased in salt-tolerant lines. SDS-PAGE of soluble proteins showed the synthesis of specific polypeptides in the presence of NaCl in culture medium and the synthesis of a new polypeptide.  相似文献   

15.
The regulation of proline biosynthesis has been examined in callus and cell cultures of the indica-type rice cultivar Khao Dawk Mali 105 (KDML105) in response to a saline treatment (250 mM NaCl) in terms of the expression of Δ1-pyrroline-5-carboxylate reductase (OsP5CR) and members of the gene family encoding the rate-determining enzyme, Δ1-pyrroline-5-carboxylate synthase (designated OsP5CS1 and OsP5CS2). Using friable callus, growth was retarded by treatment with 250 mM NaCl within 4 days, with a significant increase in the expression of OsP5CS2 by 24 h, and a less marked induction in OsP5CS1 and OsP5CR over the same time-course. Cell suspension cultures derived from the friable callus were also treated with 250 mM NaCl and an induction in OsP5CS2 was again observed, although this was not as marked as in the friable callus, and there was no significant change in OsP5CS1 and OsP5CR expression. This is the first report that details the expression of OsP5CS1 and OsP5CS2 in tissue culture and the results show that, in common with whole plants, OsP5CS2 displays a primacy of response to saline treatment. However, this response may require a community of communicating cells, as occurs in callus tissue, rather than cell suspension cultures. This difference has implications both in terms of the biology of signaling in response to increased salinity and in the use of tissue culture to screen for saline-tolerant germplasm.  相似文献   

16.
Reactive oxygen species are thought to play an important role in NaCl stress. Therefore, the expression patterns of the gene family encoding the H(2)O(2)-scavenging enzyme ascorbate peroxidase (APx; EC1.11.1.11) were analysed in roots of etiolated rice (Oryza sativa L.) seedlings in response to NaCl stress. Applying semi-quantitative RT-PCR, the mRNA levels were quantified for two cytosolic (OsAPx1 and OsAPx2), two peroxisomal (OsAPx3 and OsAPx4), and four chloroplastic (OsAPx5, OsAPx6, OsAPx7, and OsAPx8) isoforms identified in the rice genome. NaCl at 150 mM and 200 mM increased the expression of OsAPx8 and the activities of APx, but had no effect on the expression of OsAPx1, OsAPx2, OsAPx3, OsAPx4, OsAPx5, OsAPx6, and OsAPx7 in rice roots. However, NaCl at 300 mM up-regulated OsAPx8 expression, increased APx activity, and down-regulated OsAPx7 expression, but had no effect on the expression of OsAPx1, OsAPx2, OsAPx3, OsAPx4, OsAPx5, and OsAPx6. The accumulation of abscisic acid (ABA) in response to NaCl was observed in rice roots. Exogenously applied ABA also specifically enhanced the expression of OsAPx8 in rice roots. The accumulation of ABA in rice roots in response to NaCl was inhibited by fluridone (Flu), an inhibitor of carotenoid biosynthesis. Flu treatment also suppressed NaCl-enhanced OsAPx8 expression and APx activity. The effect of Flu on the expression of OsAPx8 and increase in APx activity was reversed by the application of ABA. It appears that NaCl-enhanced expression of OsAPx8 in rice roots is mediated through an accumulation of ABA. Evidence is provided to show that Na(+) but not Cl(-) is required for enhancing OsAPx8 expression, APx activity, and ABA accumulation in rice roots treated with NaCl. H(2)O(2) treatment resulted in an enhancement of OsAPx8 induction but no accumulation of ABA. Diphenylene iodonium treatment, which is known to inhibit NaCl-induced accumulation of H(2)O(2) in rice roots, did not suppress OsAPx8 induction and ABA accumulation by NaCl. It appears that H(2)O(2) is not involved in the regulation of NaCl-induced OsAPx8 expression in rice roots.  相似文献   

17.
In vitro-grown shoots and calli of Withania somnifera, an important medicinal plant, were exposed to various types of salts under in vitro culture conditions. Membrane permeability, lipid peroxidation, and the antioxidant system increased in shoots as well as in unorganized callus tissues under all the three concentrations of KCl, NaCl, KNO3, NaNO3, and CaCl2. The growth responses of shoots and callus cultures under various salt treatments revealed that the tissue could grow better under NaCl and KNO3 compared to other salts and the in vitro shoots appeared healthy at 50?mM concentration of NaCl and KNO3. The activity of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase, guaiacol peroxidase, lipoxygenase, polyphenol oxidase, and glutathione reductase increased under salt treatments, especially at higher concentrations. The greatest activity increase was recorded for peroxidases, whereas CAT was the least responsive. Only two isoforms, Mn-superoxide dismutase (Mn-SOD) and Fe-SOD, could be visualized in callus tissue while Cu/Zn-SOD was absent. Diaphorase 4 was totally missing in callus tissue and was detected only in shoots. Phenolics accumulated at all the concentrations of the salts tested as an induced protective response. The higher concentration of CaCl2 produced maximum increases in antioxidants and enzymatic activities compared to other salts. Thus, for W. somnifera the presence of excess calcium in the growing medium is most deleterious compared to other salts. Results also suggest that the nonenzymatic and enzymatic antioxidant systems of both the tissues played a primary role in combating the imposed salt stress.  相似文献   

18.
A tomato ( Lycopersicon esculentum Mill. cv. Pera) callus culture tolerant to NaCl was obtained by successive subcultures of NaCl-sensitive calli in medium supplemented with 50 m M NaCl. NaCl-tolerant calli grew better than NaCl-sensitive calli in media supplemented with 50 and 100 m M NaCl. Analysis of callus ion content showed a strong increase in Na+ and Cl both in NaCl-tolerant and -sensitive calli grown in media containing NaCl for one subculture. Cells from NaCl-tolerant calli showed a higher H+ extrusion activity than those from NaCl-sensitive calli grown for one subculture in the presence of NaCl. The inhibition of H+ extrusion by NaCl-sensitive cells was correlated with an inhibition of microsomal vanadate-sensitive H+-ATPase (EC 3.6.1.35) and ATP-dependent H+ transport, while the stimulation of H+ extrusion by cells tolerant to 50 m M NaCl was correlated with an increase in plasma membrane ATP-dependent H+ transport. The increase of ATP-dependent H+ extrusion in plasma membranes isolated from 50 m M NaCl-tolerant calli was not a result of stimulation of a vanadate-sensitive ATP hydrolytic activity or an increase in passive permeability to H+. Relative to NaCl-sensitive calli, plasma membrane H+-ATPase from calli tolerant to 50 m M NaCl showed a lower Km for Mg2+-ATP. Our results indicate that tolerance of tomato calli to 50 m M NaCl increases the affinity of plasma membrane H+-ATPase for the substrate ATP and stimulates the H+-pumping activity of this enzyme without modifying its phosphohydrolytic activity.  相似文献   

19.
In the present study, the role of ethylene in nitric oxide (NO)-mediated protection by modulating ion homeostasis in Arabidopsis callus under salt stress was investigated. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). Under 100 mM NaCl, etr1-3 callus displayed a greater electrolyte leakage and Na+/K+ ratio but a lower plasma membrane (PM) H+-ATPase activity compared to WT callus. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or sodium nitroprusside (SNP, a NO donor) alleviated NaCl-induced injury by maintaining a lower Na+/K+ ratio and an increased PM H+-ATPase activity in WT callus but not in etr1-3 callus. The SNP actions in NaCl stress were attenuated by a specific NO scavenger or an ethylene biosynthesis inhibitor in WT callus. Under 100 mM NaCl, the NO accumulation and ethylene emission appeared at early time, and NO production greatly stimulated ethylene emission in WT callus. In addition, ethylene induced the expression of PM H+-ATPase genes under salt stress. The recovery experiment showed that NaCl-induced injury was reversible, as signaled by the similar recovery of Na+/K+ ratio and PM H+-ATPase activity in WT callus. Taken together, the results indicate that ethylene and NO cooperate in stimulating PM H+-ATPase activity to modulate ion homeostasis for salt tolerance, and ethylene may be a part of the downstream signal molecular in NO action.  相似文献   

20.
The behaviour of enzymes involved in nitrogen metabolism, as well as oxidative stress generation and heme oxygenase gene and protein expression and activity, were analysed in soybean (Glycine max L.) nodules exposed to 50, 100 and 200 mM NaCl concentrations. A significant increase in lipid peroxidation was found with 100 and 200 mM salt treatments. Moreover, superoxide dismutase, catalase and peroxidase activities were decreased under 100 and 200 mM salt. Nitrogenase activity and leghemeoglobin content were diminished and ammonium content increased only under 200 mM NaCl. At 100 mM NaCl, glutamine synthetase (GS) and NADH-glutamate dehydrogenase (GDH) activities were similar to controls, whereas a significant increase (64%) in NADH-glutamate synthase (GOGAT) activity was observed. GS activity did not change at 200 mM salt treatment, but GOGAT and GDH significantly decreased (40 and 50%, respectively). When gene and protein expression of GS and GOGAT were analysed, it was found that they were positively correlated with enzyme activities. In addition, heme oxygenase (HO) activity, protein synthesis and gene expression were significantly increased under 100 mM salt treatment. Our data demonstrated that the up-regulation of HO, as part of antioxidant defence system, could be protecting the soybean nodule nitrogen fixation and assimilation under saline stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号