首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preserving species diversity is critical to ensure ecosystem functioning; however, different components of diversity might respond to human disturbance in different ways. Similarly, trophic levels might have uncoupled responses to the same disturbance, thus ameliorating or aggravating the persistence of ecological communities. In this study, we analysed how the density, richness and evenness of flowers and pollinators respond to four levels of woodland thinning intensity (0, 30, 50 and 70% of woodland basal area removed) over 2 years in three contrasting sites. We found a mismatch in the response of flowers and pollinators to thinning. Flower density and richness had disparate responses, depending on the site and year, while evenness did not change with thinning. In contrast, pollinator density and richness, but not evenness, consistently increased with thinning among years and sites. These results suggest that thinning has a great influence on pollinators through changes in abiotic conditions and, perhaps, flower attractiveness rather than through small‐scale changes in flower density and richness. At the site where tree flowers were absent, bee pollinator community composition was impoverished, suggesting that trees provide important floral resources to pollinators. Our findings indicate that disturbance may diminish local plant abundance and richness, but pollinator abundance and richness are enhanced after intense thinning at small scales.  相似文献   

2.
Rocky macroalgal assemblages are typically composed of patches differing in age and species composition and grazing is generally a very important modifier of such assemblages. We hypothesized that patch colonization time determines its algal community and that grazing effects depend on the colonization time and vary with depth. We created patches by placing empty substrates at two sublittoral depths over five consecutive months, manipulated grazer entry and determined the algal species composition in each patch in the next growing season. Distinct algal colonization periods resulted in different algal assemblages. Although algal communities in our study area consist mainly of opportunistic species, thus being highly dynamic, the resulting macroalgal assemblages differed in species richness, diversity, composition, and total biomass even a year after first colonization. Substrates close to the water-surface supported a higher species richness and diversity than those in the deeper littoral. The community characteristics, total density, total biomass and species richness were only slightly, if at all affected by grazing. However, individual algal species or taxa showed varying and even contrasting responses to grazing, often differently between depths and depending on colonization time. In the deeper littoral, but not close to the water surface, grazing increased the density of filamentous brown algae while reducing the green alga Cladophora glomerata. In these taxa, grazing effects were strongest in patches colonized during the early growing season. Grazing at the colonization stage had lasting consequences for the density of several individual species.  相似文献   

3.
Effect of disturbance on root colonization and vertical distribution of arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was investigated at two adjacent sites of Lal Suhanra Biosphere Reserve, Pakistan. Disturbance clearly affected AMF and DSE colonization, vertical distribution of AMF and plant community structure. Mean colonization of AMF and DSE was slightly less at the disturbed site. Average spore densities, diversity and richness of AMF and DSE were higher at the undisturbed site. A study of the vertical distribution of AMF associated with the five plant species most common to each study site indicated that beside AMF and DSE colonization disturbance may affect AMF species composition. Correlation of AMF with DSE is also discussed.  相似文献   

4.
Studies in experimental grasslands have extensively documented the effects of sown plant diversity on the colonization of new species, but the responses of the sown plant combinations themselves have rarely been investigated. We established experimental grasslands differing in species richness (1, 2, 4, 8, and 16) and functional group number and composition (1–4; legumes, grasses, small herbs, tall herbs), and we studied the changes in the abundance of sown species (residents) in both weeded and non-weeded subplots over a period of five years after sowing. The accumulation of new species through spontaneous colonization in the non-weeded treatment did not affect the number of resident species, but had increasingly negative effects over time on the cover of resident species and their aboveground biomass production at community level. Temporal stability of resident populations was lower and year-to-year changes in resident species composition were larger in non-weeded than in weeded subplots. Compositional dissimilarity between weeded and non-weeded treatments increased through time. These negative effects of the colonization of new species on the abundances and stability of resident populations depended on resident species identity and not on additional variation between different functional groups. The colonization of new species did not change the number of resident species emerging from seeds, but reduced seedling densities of residents. Colonization did not affect the structure of resident communities as measured by species evenness, functional trait diversity and mean trait values suggesting that colonization can destabilize the species composition of residents in terms of abundance while leaving them unchanged in terms of functional characteristics. Generally, negative impacts of colonizing species on residents which accelerated through time decreased with an increasing number of sown species. Sowing more diverse grassland mixtures increases their predictability in terms of ecosystem characteristics, which is important for ecological restoration and sustainable agriculture.  相似文献   

5.
Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182–194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life‐history traits such as spawning mound construction, associations with mound‐building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound‐building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound‐building fishes serve as keystone species for colonization of headwater streams.  相似文献   

6.
Understanding how vegetation composition varies with season and interannual climate variability is important for any ecological research that uses vegetation data derived from surveys for the basis of inference. Misunderstanding this variation can influence land management and planning decisions, leading to poor implementation of biodiversity offsetting mechanisms, for example. We monitored plots (400 m2) grazed by livestock paired with adjacent ungrazed plots in derived native pastures four times a year over 2.5 years on the North‐West Slopes of New South Wales. Species density in plots varied greatly with season and interannual rainfall. Highest species density was recorded in spring, though species density in summer was not significantly lower, nor was a spring–summer peak in species density evident in the 2009 drought. Surveys in spring 2008 had the highest species density, and recorded only 60–72% of the total species recorded at each site over 2.5 years. Variation in the proportion of total site diversity represented in combinations of two or three surveys was large, though the best combinations comprised surveys from spring and summer in years of above‐average rainfall, either from the same spring‐summer, or from different years. Compositional differences among sites were much greater than within sites, showing that differences among sites related to broad environmental gradients were not overwhelmed by seasonal and interannual variability in site composition. When grazing was excluded, there was no evidence of competitive exclusion by the dominant grasses, and no directional shift in composition. The implications of these findings for ecological research depend on the question being addressed: if capturing a large proportion of site diversity is important, then surveys must be carefully timed, or repeat surveys must be conducted. Single surveys did not effectively capture site diversity for use in biodiversity offsetting, and the timing of repeat surveys was critical.  相似文献   

7.
Question: How does the intensity of species interactions affect species and functional group composition of an annual plant community? Location: Sede Boqer, Negev Desert, Israel. Methods: The potential for competitive interactions in two annual plant communities (desert and coastal) from semi‐stabilized sand dunes was manipulated by varying seed bank density and therefore the number of potentially interacting individuals. Communities were exposed to three different irrigation regimes, mimicking precipitation at the desert site, the coastal site, and an intermediate precipitation level. Plots were maintained for 3 years, and percentage cover of each species in the plots was recorded at the end of each growing season. We used redundancy analysis to test for effects of initial density, irrigation, and year on the species and functional group composition of the communities. Results: Initial density had significant effects on species composition, and these effects remained significant over 3 years, even as total community percentage cover became more similar among treatments over time. Density effects did not depend on resource availability (irrigation level). Functional group identity or individual plant size did not predict which species would be good competitors, and a species' competitive ability did not predict its abundance in the field. Conclusions: Species interactions strongly affect community composition, and those effects carry over into subsequent years such that competition does not lead to convergence in community structure over time. However, the particular changes in composition observed were not predictable by some of the traits that have been found important in individual‐level experiments. We speculate that the outcome of competition in diverse communities will depend on multiple traits, in contrast to the outcome of individual‐level pairwise experiments. We also speculate that the shift in composition with density could mean that local variation in density may contribute to maintenance of diversity in this system.  相似文献   

8.
A survey was carried out to determine the density and species composition of germinable seed in the surface soil layers of 30 plots within a coniferized lowland woodland in East Kent in order to establish the resources available for habitat creation in the event of some areas being modified during a proposed holiday village development. The selected plots included conifer plantations (up to 69 years old), broad-leaved plantations and the semi-natural broad-leaved edges that remain on parts of the perimeter of the site which were used as the control. A total of 13 682 seedlings emerged from the soil samples during the four-month germination trials. Fifty-two species were identified of which eight were ancient woodland indicator species for south-east England. The most abundant species represented in the seed banks were: Juncus effusus, Rubus fruticosus, Carex sylvatica, Betula pendula and Agrostis tenuis. Between-site comparisons of coniferous plots of different ages revealed a marked reduction in the seed species and seed density in plantations over 65 years old. Results of soil nutrient and texture analyses ruled out the likelihood of edaphic factors being responsible for between-site differences in seed bank composition. Seed species richness and diversity (Shannon-Wiener diversity index) were greatest in the semi-natural broad-leaved edges, but the diversity index used also showed that two replanted conifer sites had high values despite few species being present. The usefulness and limitations of diversity indices in the context of seed bank studies is discussed. From the results of the study, management proposals for the site have been put forward in order to maintain floristic diversity and mitigate the impact of the proposed development.  相似文献   

9.
Elytrigia atherica is a tall clonal grass species typical of higher salt marshes, but is gradually invading to the lower marshes. At young successional stages of a salt marsh, E. atherica is found sparsely dispersed in small groups of ramets. These patches increase in size and ramet density over time, eventually forming extensive swards as succession proceeds. This study investigates the change in the clonal diversity of E. atherica stands during colonization as a result of its reproductive strategy. Clonal diversities of differently sized patches of E. atherica were investigated on two lower salt-marsh sites of different age, 25 years and 35 years, respectively. Microsatellite fingerprint patterns were used to determine genet identities and to estimate relatedness and genetic differentiation between the sites, between patches within sites and within patches. The majority of the patches on both sites contained more than one genet. On the older site, the clonal diversity was higher than on the younger site. However, the clonal diversity tended to decrease with increasing patch size. Low genetic differentiation was found between the two sites, indicating habitat differentiation, whereas differentiation between patches within sites was high. It is reasoned that different environmental conditions could have resulted in different clonal structures: On an older marsh, the increase of successful seedling recruitment, due to more suitable environmental conditions, leads to an increase in clonal diversity. Over time, with increasing ramet density, intraspecific competition is likely to increase, resulting in a decrease of clonal diversity.  相似文献   

10.
赵金莉  贺学礼 《生态学报》2010,30(5):1349-1355
克隆植物的生态功能在沙地植被恢复过程中占据着重要位置。在毛乌素沙地由北向南选择两个典型样地,以根茎克隆植物沙鞭和羊柴为试验材料,连续2a系统地研究了克隆植物生长对AM真菌物种多样性和菌根形成的影响。结果表明:克隆植物生长对AM真菌物种多样性和丛枝菌根形成的影响因植物种类和样地不同而异。沙鞭通过克隆生长侵入灌丛空地后,AM真菌多样性指数在中国科学院植物研究所鄂尔多斯沙地草地生态研究站(简称OSES)和陕西榆林珍稀沙生植物保护基地(简称RSCF)样地均上升;孢子密度、菌丝、丛枝和总定殖率均显著提高;泡囊定殖率也有所增加,在OSES样地达显著水平,在RSCF样地未达显著水平。羊柴通过克隆生长侵入灌丛空地后,AM(Arbuscular mycorrhizal)真菌多样性指数在OSES样地上升,而在RSCF样地下降;孢子密度和丛枝定殖率在OSES和RSCF样地均显著增加,而泡囊定殖率均显著降低;菌丝和总定殖率也降低,在OSES样地未达显著水平,在RSCF样地达显著水平。  相似文献   

11.
In order to assess how diversity changes over time at sites undergoing environmental change, we examined three data sets on long-term trends in taxonomic richness and composition: (1) 22 years of rodent censuses from a site in the Chihuahuan Desert of Arizona; (2) 50 years of bird surveys from a three-county region of northern Michigan; and (3) approximately 10,000 years of pollen records from two sites in Europe. In all three cases, richness has remained remarkably constant despite large changes in composition. The results suggest that while species composition may be highly variable and change substantially in response to environmental change, species diversity is an emergent property of ecosystems that is often maintained within narrow limits. Such regulation of diversity requires maintenance of relatively constant levels of productivity and resource availability and an open system with opportunity for compensatory colonizations and extinctions. In addition to studying the effects of diversity on biogeochemical processes, it will often be useful to think of species richness as an emergent consequence of ecosystem processes.  相似文献   

12.
Arbuscular mycorrhizal (AM) fungi in a chronosequence of 5–42-year-old Caragana korshinskii plantations in the semi-arid Loess Plateau region of northwestern China were investigated. AM fungi colonization, spore diversity and PCR-denatured gradient gel electrophoresis-based AM fungal SSU rRNA gene sequences were analyzed. AM fungi colonization [measured as the percent of root length (%RLC), vesicular (%VC) and arbuscular (%AC) colonization] and spore density were significantly correlated with sampling month, but not with plant age, except for %RLC. The percent of vesicular colonization was negatively correlated with soil total nitrogen and organic carbon, and spore density was negatively correlated with soil moisture and available phosphorus. Ten distinguishable AM fungal spore morphotypes, nine Glomus and one Scutellospora species, were found. Nine AM fungal Glomus phylotypes were identified by sequencing, but at each sampling time only four to six AM fungal phylotypes were detected. The AM fungal community was significantly seasonal, whereas the AM fungal species richness did not increase with plantation age. A significant change in AM fungal colonization and community composition over an annual cycle was observed in this study, and our results suggest that the changes of AM are the product of the interaction between host phenology, soil characteristics and habitat. Understanding these interactions is essential if habitat restoration is to be effective.  相似文献   

13.
Plant succession theory underpins the development of strategies for the conservation and regeneration of native communities. Current theory has been based largely on space‐for‐time rather than long‐term monitoring data, which have known limitations. There is general consensus that more site‐specific studies are needed to corroborate existing hypotheses. The target vegetation is a brigalow (Acacia harpophylla, Mimosaceae) forest in one of Australia's most endangered ecosystems, which was cleared and burnt in 1963. Forty quadrats were placed systematically within each of six 20 m × 20 m permanent plots. Presence, density and per cent canopy cover data were recorded for each species at 18 times over 46 years. Brigalow dominated the original vegetation, assumed dominance soon after clearing through massive root suckering and remained dominant throughout the study. It achieved maximum density within two years when severe intraspecific competition led to self‐thinning. After approximately 30 years, vacant niches appeared. Woody understorey species were slow to recolonise. Species richness and other diversity indices increased rapidly to a maximum after 2–4 years, declined until the 30th year when they again increased. This was the pattern of the species‐rich herbaceous layer; woody species showed a steady monotonic increase. The ‘hump‐shaped’ relationship between cover (biomass) and species richness was confirmed. This example fits the inhibition model for which few examples have been described. While the long‐term successional pattern is slightly confounded by climatic variability preceding sample surveys, this space‐for‐time study not only supports a bimodal pattern of diversity over time but also indicates that the relative species richness of the herbaceous and woody layers may explain the extreme variability reported in the literature.  相似文献   

14.
An effect of age of quarry lakes on rotifer abundance and species composition has been evaluated. Rotifers occurred in all lakes under study. They were even found in the youngest (2 years of age) one, Rogonica 4, but both rotifer density and species richness were low there. Rotifer communities of much higher density and species diversity were noted in lakes only 4–6 years older. Lakes of over 30 years of age were strongly differentiated in rotifer numbers and species structure. In general, age of quarry lakes has an impact on rotifer communities only at the very beginning of the process of colonization. Several years later other factors become more important, e.g., depth or trophic state of the lakes.  相似文献   

15.
We examined whether terrestrial vertebrates affected the arbuscular mycorrhizal fungal spore communities and mycorrhizal inoculum potential (MIP) of a tropical rain forest soil by comparing plots where terrestrial vertebrates had been excluded for 3 years to adjacent control plots. We extracted spores from soil using sucrose density gradient centrifugation and assayed MIP by growing seedlings of maize ( Zea mays ) and a rain forest tree ( Flindersia brayleana ) in intact soil cores from exclosure and control plots. Control plots had significantly higher spore abundance, species richness and diversity than exclosures. Spore community composition also differed significantly between exclosure and control plots. Seedlings of both plant species grown in control cores had significantly higher arbuscular-mycorrhizal colonization than those grown in exclosure cores. This study suggests that loss of vertebrates could alter rates of mycorrhizal colonization with consequences for community and ecosystem properties.  相似文献   

16.
Island biogeography theory, created initially to study diversity patterns on islands, is often applied to habitat fragments. A key but largely untested assumption of this application of theory is that landscape matrix species composition is non‐overlapping with that of the islands. We tested this assumption in successional old field patches in a closely mowed matrix, and because our patches are appropriately viewed as sets of contiguous habitat units we studied patterns of species richness per unit area. Previous studies at our site did not find that diversity patterns on patch ‘islands’ conformed to predictions of island biogeography theory. Our results indicate that when matrix species are removed from the patch samples, diversity patterns conform better to theory. We suggest that classical island theory remains an appropriate tool to study diversity patterns in fragmented habitats, but that allowances should be made for spill‐over colonization of ‘islands’ from the ‘sea’.  相似文献   

17.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context.  相似文献   

18.
Question: Does the course of succession on a coal mine restored by hydroseeding converge with a reference community in terms of species composition and vegetation structure? What is the rate of succession on restored areas? How does the balance between local colonization and extinction rates change during succession? Which species group (native or hydroseeded) determines the successional process? Location: Large reclaimed coal mine in the north of Palencia province, northern Spain (42°50′N, 4°38′W). Methods: Between 2004 and 2009 we monitored annually vascular plant species cover in nine permanent plots (20 m2 each) at a restored mine; these plots were structured to account for site aspect (north, south and flat). Three identical permanent plots were established in the surrounding reference community and monitored in 2004 and 2009. We used detrended correspondence analysis to assess successional trends and rates of succession, generalized linear mixed models to derive patterns of vegetation structural changes and turnover through time, and Huisman–Olff–Fresco modelling to illustrate response of individual species through time. Results: The three restored mine areas exhibited a successional trend towards the reference community through time, although speed of convergence differed. However, after 6 years the restored sites had diverged considerably and this was greater than the dissimilarity reduction with respect to the reference community. Richness, diversity and native species cover increased linearly through time, whereas hydroseeded species cover decreased. Success of hydroseeded species initially differed in the three areas, and this was negatively related with native species colonization rates. Response patterns through time of ten hydroseeded and 20 most common native species are described. Conclusions: Vegetation structural parameters rapidly converged with the reference community, whereas compositional convergence needed much longer. At the same time, successional composition trajectories and rates were related to site properties (here aspect).  相似文献   

19.
Biodiversity loss is a global concern, and maintaining habitat complexity in naturally patchy landscapes can help retain regional diversity. A mosaic of prairie, savanna, and forest historically occurred across central North America but currently is highly fragmented due to human land conversion. It is unclear how each habitat type now contributes to regional diversity. Using legacy data, we resurveyed savanna plant communities originally surveyed in the 1950s to compare change in savannas to that in remnant forests and prairies. Savanna community structure and composition changed substantially over the past 60 years. Tree canopy density nearly doubled and many prairie and savanna specialist species were replaced by forest and non‐native species. All three habitats gained and lost many species since the 1950s, resulting in large changes in community composition from local colonizations and extinctions. Across all three habitats, regional species extinctions matched that of regional colonization resulting in no net change in regional species richness. Synthesis—Despite considerable species turnover within savannas, many species remain within the broader prairie–savanna–forest mosaic. Both regional extinctions and colonizations were high over the past 60 years, and maintaining the presence of all three community types—prairie, savanna and forest—on the landscape is critical to maintaining regional biodiversity.  相似文献   

20.
1. Macroinvertebrate colonization of artificial leaf packs of differing palatability to detritivores was measured in a low-order stream. 2. The most palatable leaf types—alder and young beech—were colonized mainly by detritivores and consumed rapidly, so that species diversity on the substrate remained low. In the case of the less palatable old beech and paper ‘leaves’, however, colonization was slower but species diversity approached that of the surrounding benthos. 3. After 1 week, species diversity in paper ‘leaf packs was equivalent to that of the benthos, but species composition was dissimilar. 4. I argue that species diversity of a patch of stream bed may be inversely related to the abundance or palatability of a given food resource, and that this relationship is maintained by the instability of the stream bed habitat, precluding a long-term community response to increased food availability. It may be, however, that the dispersal abilities of many aquatic insects allow a rapid response to the creation of novel habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号