首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of Pseudomonas rhodos 9-6 produce two morphologically distinct flagella termed plain and complex, respectively. Fine structure analyses by electron microscopy and optical diffraction showed that plain flagellar filaments are cylinders of 13-nm diameter composed of globular subunits like normal bacterial flagella. The structure comprises nine large-scale helical rows of subunits intersecting four small-scale helices of pitch angle 25 degrees . Complex filaments have a conspicuous helical sheath, 18-nm wide, of three close-fitting helical bands, each about 4.7-nm wide, separated by axial intervals, 4.7 nm wide, running at an angle of 27 degrees . The internal core has similar but not identical substructure to plain filaments. Unlike plain flagella, the complex species is fragile and does not aggregate in bundles. Mutants bearing only one of two types of flagellum were isolated. Cells with plain flagella showed normal translational motion, and cells with complex flagella showed rapid spinning. Isolated plain flagella consist of a 37,000-dalton subunit separable into two isoproteins. Complex filaments consist of a 55,000-dalton protein; a second 43,000-dalton protein was assigned to complex flagellar hooks. The results indicate that plain and complex flagella are entirely different in structure and composition and that the complex type represents a novel flagellar species. Its possible mode of action is discussed.  相似文献   

2.
The bacterial flagellum transforms its shape into several distinguishable helical shapes (polymorphs) under various environmental conditions. Polymorphs of each type of flagellum stay on a circle in the pitch-diameter (P versus πD) plot, indicating that they all belong to one family. Previously, we showed that the flagellar family of a marine bacterium Idiomarina loihiensis (Family II) differed from the conventional flagellar family of Salmonella typhimurium (Family I). The pitch and diameter of Family II flagella are half those of Family I flagella. We have suggested that Family I encompasses peritrichous flagella, while Family II forms a polar flagellum. In this study, we have surveyed the polymorphs of flagella from 18 other species and categorized their family types. Previous observations were confirmed; Family I form peritrichous flagella and Family II form polar flagella. Furthermore, we found that lateral flagella had helical parameters much smaller than those of the other two Families and thus belong to a new family (Family III).  相似文献   

3.
4.
Like many Gram-negative pathogens, enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) use a macromolecular type III secretion system (TTSS) to inject effector proteins into eukaryotic host cells. The membrane-associated needle complex (NC) of the TTSS, which shows broad similarity to the flagellar basal body, is conserved amongst bacterial pathogens. However, the extracellular part of the TTSS of EPEC and EHEC is unique, in that it has a hollow, approximately 12 nm in diameter, filamentous extension to the NC. EspA filaments are homo-polymers made of the translocator protein EspA. The three-dimensional structure of EspA filaments is comparable to that of flagella; the helical symmetry and packing of the subunits forming both filamentous structures are very similar. Like flagella, EspA filaments show antigenic polymorphism as EspA from different EPEC and EHEC clones show no immunological cross-reactivity. In this study, we determined the molecular basis of the antigenic polymorphism of EspA filaments and identified a surface-exposed hypervariable domain that contains the immunodominant EspA epitope. By exchanging the hypervariable domains of EspA(EPEC) and EspA(EHEC) we swapped the antigenic specificity of the EspA filaments. As for the flagellin D3 domain, which is known to tolerate insertions of natural and artificial amino acid sequences, we have inserted short peptides into the surface-exposed, hypervariable domain of EspA. We demonstrated that the inserted peptides are presented on the surface of the recombinant EspA filaments forming a new immunodominant epitope. Accordingly, EspA filaments have a potential to be developed into a novel epitope display system.  相似文献   

5.
Unidirectional and rotary shadowing techniques have been applied in studying the surface structure of two types of intermediate filaments. Keratin filaments and neurofilaments demonstrate a approximately 21-nm axial periodicity which probably indicates the helical pitch of the outer shell of the filament. Analysis of unidirectionally shadowed keratin showed that the helix is left-handed. The observation of a left-handed helix of 21-nm pitch supports the three-stranded protofilament model of Fraser, Macrae, and Suzuki (1976, J. Mol. Biol. 108:435-452), and indicates that keratin filaments probably consist of 10 three-stranded protofilaments surrounding a core of three such protofilaments, as predicted by models based on x-ray diffraction of hard keratin filaments. Neurofilaments do not demonstrate an easily identifiable hand, so their consistency with the model is, as yet, uncertain.  相似文献   

6.
Caulobacter crescentus flagellar filament has a right-handed helical form   总被引:6,自引:0,他引:6  
Caulobacter crescentus flagellar filaments were examined for their shape and handedness. Contour length, wavelength and height of the helical filaments were 1.34 +/- 0.14 micron, 1.08 +/- 0.05 micron and 0.27 +/- 0.04 micron, respectively. Together with the value of the filament diameter, 14 +/- 1.5 nm, the parameters of the curvature (alpha) and twist (phi) were calculated as 3.9(%) for alpha and 0.026 (rad) for phi, which are similar to those of the curly I filament of Salmonella typhimurium. Dark-field light microscopic analysis revealed that the C. crescentus wild-type filament possesses a right-handed helical form. Given the result that C. crescentus cells normally swim forward, in the opposite direction to a polar flagellum, it is likely that C. crescentus swims by rotation of a right-handed curly shaped flagellum in a clockwise sense, whereas S. typhimurium and Escherichia coli swim by rotation of left-handed normal type flagella in a counterclockwise sense.  相似文献   

7.
In this morphological study of bacterial flagella, single flagellar filaments in solutions were photographed by dark-field light microscopy to determine parameters to describe their intact shapes. First, I measured pitches of helices I, II and III assumed by copolymers of flagellins from Salmonella strains SJ25 and SJ814 (Asakura & Iino, 1972), and combined the data with electron microscopic data of the contour length per period of each filament to calculate the pitch angles of the three helices. (The pitch angle is the angle between a tangent to the filament and the helical axis.)Secondly, filaments which consisted of two blocks assuming different helices were prepared by two-step copolymerization of SJ25 and SJ814 flagellins and the configurations of these mixed-type filaments were examined. In filaments of any mixed type, the axes of the constituent blocks were oriented at the same angle, called the “block angle” Ψ. This angle was found to be approximated by Ψ = 180 ° ? ¦θ1 ? θ2¦, where θ1 and θ2 are the pitch angles of the mixed helices. On the basis of this finding, the morphology of mixed-type filaments is discussed.  相似文献   

8.
Common prokaryotic motility modes are swimming by means of rotating internal or external flagellar filaments or gliding by means of retracting pili. The archaeabacterial flagellar filament differs significantly from the eubacterial flagellum: (1) Its diameter is 10-14 nm, compared to 18-24 nm for eubacterial flagellar filaments. (2) It has 3.3 subunits/turn of a 1.9 nm pitch left-handed helix compared to 5.5 subunits/turn of a 2.6 nm pitch right-handed helix for plain eubacterial flagellar filaments. (3) The archaeabacterial filament is glycosylated, which is uncommon in eubacterial flagella and is believed to be one of the key elements for stabilizing proteins under extreme conditions. (4) The amino acid composition of archaeabacterial flagellin, although highly conserved within the group, seems unrelated to the highly conserved eubacterial flagellins. On the other hand, the archaeabacterial flagellar filament shares some fundamental properties with type IV pili: (1) The hydrophobic N termini are largely homologous with the oligomerization domain of pilin. (2) The flagellin monomers follow a different mode of transport and assembly. They are synthesized as pre-flagellin and have a cleavable signal peptide, like pre-pilin and unlike eubacterial flagellin. (3) The archaeabacterial flagellin, like pilin, is glycosylated. (4) The filament lacks a central channel, consistent with polymerization occurring at the cell-proximal end. (5) The diameter of type IV pili, 6-9 nm, is closer to that of the archaeabacterial filament, 10-14 nm. A large body of data on the biochemistry and molecular biology of archaeabacterial flagella has accumulated in recent years. However, their structure and symmetry is only beginning to unfold. Here, we review the structure of the archaeabacterial flagellar filament in reference to the structures of type IV pili and eubacterial flagellar filaments, with which it shares structural and functional similarities, correspondingly.  相似文献   

9.
Hydrodynamics predicts that swimming bacteria generate a propulsion force when a helical flagellum rotates because rotating helices necessarily translate at a low Reynolds number. It is generally believed that the flagella of motile bacteria are semirigid helices with a fixed pitch determined by hydrodynamic principles. Here, we report the characterization of three mutations in laboratory strains of Escherichia coli that produce different steady-state flagella without losing cell motility. E. coli flagella rotate counterclockwise during forward swimming, and the normal form of the flagella is a left-handed helix. A single amino acid exchange A45G and a double mutation of A48S and S110A change the resting flagella to right-handed helices. The stationary flagella of the triple mutant were often straight or slightly curved at neutral pH. Deprotonation facilitates the helix formation of it. The helical and curved flagella can be transformed to the normal form by torsion upon rotation and thus propel the cell. These mutations arose in the long-term laboratory cultivation. However, flagella are under strong selection pressure as extracellular appendages, and similar transformable flagella would be common in natural environments.  相似文献   

10.
The flagella of Salmonella and other bacteria are constructed from molecules of the protein flagellin in a way which permits relatively easy transition between members of a family of distinct stable left and right-handed helical waveforms. Changes of waveform, particularly between “normal” (left-handed) and “curly” (right-handed) play an important role in the switch from smooth swimming to tumbling in chemotaxis. This paper establishes some mechanical properties of model flagella built from bi-stable subunits, which in turn clarifies the mechanics of the changes of waveform which occur, in a viscous fluid environment, at various points in the swimming cycle.Available data on the joining of different helical waveforms in a single filament, supplemented by information on the way in which helical filaments flatten down in preparation for electron microscopy, are well-fitted by the mechanical behaviour of an assembly of mechanical subunits having some simple distinctive design features. The same arrangement makes possible an explanation for the formation of flagellar-like but straight polymers from Salmonella flagellin in the presence of high concentrations of NaCl.  相似文献   

11.
The eubacterial flagellar filament is an external, self-assembling, helical polymer approximately 220 A in diameter constructed from a highly conserved monomer, flagellin, which polymerizes externally at the distal end. The archaeal filament is only approximately 100 A in diameter, assembles at the proximal end and is constructed from different, glycosylated flagellins. Although the phenomenology of swimming is similar to that of eubacteria, the symmetry of the archebacterial filament is entirely different. Here, we extend our previous study on the flagellar coiled filament structure of strain R1M1 of Halobacterium salinarum. We use strain M175 of H.salinarum, which forms poly-flagellar bundles at high yield which, under conditions of relatively low ionic-strength (0.8 M versus 5 M) and low pH ( approximately 2.5 versus approximately 6.8), form straight filaments. We demonstrated previously that a single-particle approach to helical reconstruction has many advantages over conventional Fourier-Bessel methods when dealing with variable helical symmetry and heterogeneity. We show here that when this method is applied to the ordered helical structure of the archebacterial uncoiled flagellar filament, significant extensions in resolution can be obtained readily when compared to applying traditional helical techniques. The filament population can be separated into classes of different morphologies, which may represent polymorphic states. Using cryo-negatively stained images, a resolution of approximately 10-15 A has been achieved. Single alpha-helices can be fit into the reconstruction, supporting the proposed similarity of the structure to that of type IV bacterial pili.  相似文献   

12.
Dark-field microscopy with a high-powered light source revealed that the outer doublet microtubules (DMTs) from sea urchin (Pseudocentrotus depressus and Hemicentrotus pulcherrimus) sperm flagella assume helically coiled configurations (Miki-Noumura, T., and R. Kamiya. 1976. Exp. Cell Res. 97: 451.). We report here that the DMTs change shape when the pH or Ca-ion concentration is changed. The DMTs assumed a left-handed helical shape with a diameter of 3.7 +/- 0.5 micron and a pitch of 2.8 +/- 0.7 micron at pH 7.4 in the presence of 0.1 mM CaCl2, 1 mM MgSO4, and 10 mM Tris-HCl. When the pH was raised to 8.3, the helical diameter and pitch decreased to 2.1 +/- 0.1 micron and 1.3 +/- 0.3 micron, respectively. This transformation was a rapid and reversible process and was completed within 1 min. Between pH 7.2 and 8.3, the DMTs assumed intermediate shapes. When the Ca-ion concentration was depleted with EGTA, the helical structure became significantly larger in both pitch and diameter. For instance, the diameter was 3.8 +/- 0.4 micron at pH 8.3 in the presence of 1 mM EGTA and 2 mM MgSO4. Using a Ca-buffer system, we obtained results which suggested that this Ca-induced transformation took place at a Ca concentration of approximately 10(-7) M. These results were highly reproducible. The conformational changes in the DMT may play some role in the bending wave form of flagellar movement.  相似文献   

13.
The genome of a halophilic archaeon Haloarcula marismortui carries two flagellin genes, flaA2 and flaB. Previously, we demonstrated that the helical flagellar filaments of H. marismortui were composed primarily of flagellin FlaB molecules, while the other flagellin (FlaA2) was present in minor amounts. Mutant H. marismortui strains with either flagellin gene inactivated were obtained. It was shown that inactivation of the flaA2 gene did not lead to changes in cell motility and helicity of the filaments, while the cells with inactivated flaB lost their motility and flagella synthesis was stopped. Two FlaB flagellin forms having different sensitivities to proteolysis were found in the flagellar filament structure. It is speculated that these flagellin forms may ensure the helical filament formation. Moreover, the flagella of a psychrotrophic haloarchaeon Halorubrum lacusprofundi were isolated and characterized for the first time. H. lacusprofundi filaments were helical and exhibited morphological polymorphism, although the genome contained a single flagellin gene. These results suggest that the mechanisms of flagellar helicity may differ in different halophilic archaea, and sometimes the presence of two flagellin genes, in contrast to Halobacterium salinarum, is not necessary for the formation of a functional helical flagellum.  相似文献   

14.
We have found that several kinds of helical flagella from Salmonella and Escherichia become straight in the presence of 0·5 m-citric acid at pH values below 4·0, while the straight flagella from a mutant Salmonella (SJ814) are transformed into a helical shape under the same conditions. These transformations are reversible and transitional.Current models of bacterial flagella (Calladine, 1976,1978; Kamiya, 1976) predict that the family of distinct wave-forms should include two types of straight flagella, which have either an extreme right-handed twist (about 7 ° at the surface of the flagellum) or an extreme left-handed twist (2 ° to 3 °). As the inclination of the near-longitudinal rows of subunits in the Salmonella SJ814 flagellum (O'Brien &; Bennett, 1972) agrees closely with the degree of twisting predicted for the right-handed type, this flagellum has been considered to be the right-handed type. We have determined that the basic (1-start) helix in flagella is right-handed, using the method of Finch (1972). This fact, together with the selection rule (O'Brien &; Bennett, 1972), strongly suggests that the near-longitudinal rows in an SJ814 flagellum are right-handed, in agreement with the prediction. However, our optical diffraction and X-ray diffraction studies have revealed that the near-longitudinal rows of subunits in the citric acid-induced straight flagella and in the straight flagella from a mutant E. coli (Kondoh &; Yanagida, 1975) tilt at an angle of 2 ° to 3 ° with respect to the flagellar axis. This inclination is probably left-handed. Thus the predicted presence of the two types of straight flagella seems to be proved.  相似文献   

15.
The non-motile strain W3623 ha-177 of Escherichia coli (Kondoh &; Ozeki, 1976) is known to produce straight flagella as a result of a mutation in the structural gene for the flagellin. Under physiological conditions, however, flagella of this mutant undergo straight-to-helical transformation with small changes of pH. Evidence for this came from dark-field light microscope observations of reconstituted flagella. At pH values lower than 6.6 in the presence of 0.1 m-NaCl, the flagella were straight. When, however, the pH was raised above 7.3, they were transformed into left-handed helices with a pitch of 2.05 μm. The transformation was rapid and reversible. In the pH range between 6.6 and 7.3, straight and transformed flagella co-existed but no stable forms other than the two were found.Bacterial motility also depended on the pH of the medium: at pH values above 7.0, bacteria swam by means of the transformed flagella. Therefore, helically transformed flagella of the mutant strain were similar in morphology and function to normal-type flagella of the parent strain. The significance of this similarity is discussed on the basis of general considerations of polymorphism in bacterial flagella.  相似文献   

16.
Dynamic images of isolated bacterial flagellar filaments undergoing cyclic transformations were recorded by dark-field light microscopy and an ultrasensitive video camera. Flagellar filaments derived from Salmonella SJ25 sometimes stick to a glass surface by short segments near one end. When such a filament, which is a left-handed helix, was subjected to a steady flow of a viscous solution of methylcellulose, its free portion was found to transform cyclically between left-handed (normal) and right-handed (curly or semi-coiled) helical forms. The transformations did not occur simultaneously throughout the whole length of a filament, but occurred at a transition point, which proceeded along the filament. Each transformation process consisted of three phases: initiation, growth and travel. The magnitudes of the mechanical forces, torque and tension, which were generated on a filament by the viscous flow, were obtained by quantitative hydrodynamic analyses. The torque was found responsible for initiating the transformation. The critical magnitude of torque required to induce the normal to semi-coiled transformation was ?11 × 10?19 N m and that for the reverse transformation from the semi-coiled to the normal form was 4 × 10?19 N m. Therefore, the filaments showed the characteristics of hysteresis during the cyclic transformation. New types of unstable right-handed helical forms (medium and large) were also induced by mechanical force.  相似文献   

17.
Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L‐type or R‐type, having slightly different conformations and inter‐protofilaments interactions. By mixing different ratios of L‐type and R‐type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site‐directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non‐motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right‐handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine’s model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.  相似文献   

18.
Scharf B 《Journal of bacteriology》2002,184(21):5979-5986
The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30 degrees, a pitch of 1.36 micro m, and a helical diameter of 0.50 micro m. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations.  相似文献   

19.
The helical filaments of the cyanide hydratase from Gloeocercospora sorghi have been reconstructed in three dimensions from freeze dried, unidirectionally shadowed specimens using iterative real-space helical reconstruction. The average power spectrum of all selected images has three clear reflections on different layer lines. The reconstruction is complicated by the fact that three possible indexing schemes are possible and reconstructions using the starting symmetries based on each of these indexing schemes converge on three-dimensional volumes which appear plausible. Because only one side is visible in shadowed specimens, it is necessary to examine the phases from a single filament by cryo-electron microscopy in order to make an unequivocal assignment of the symmetry. Because of the novel nature of the reconstruction method used here, conventional cryo-EM methods were also used to determine a second reconstruction, allowing us to make comparisons between the two. The filament is shown to have a left-handed one-start helix with D(1) symmetry, 5.46 dimers per turn and a pitch of 7.15nm. The reconstruction suggests the presence of an interaction across the groove not previously seen in nitrilase helical fibres.  相似文献   

20.
Structure of complex flagellar filaments in Rhizobium meliloti   总被引:11,自引:8,他引:3       下载免费PDF全文
The complex flagella of Rhizobium meliloti 2011 and MVII-1 were analyzed with regard to serology, fine structure, subunits, and amino acid composition. The serological identities of flagellar filaments of the two strains were demonstrated by double immunodiffusion with antiflagellin antiserum. The filaments had a diameter of 16 nm. Their morphology was dominated by the prominent undulations of an external three-start helix running at a 10-nm axial distance and at an angle of 32 degrees. Faint nearly axial striations indicated the presence of a tubular core of a different helical order. The complex filaments consisted of 40,000-dalton flagellin monomers. Typically, the amino acid composition was 3 to 4% higher in nonpolar residues and 5 to 7% lower in aspartic and glutamic acids (and their amides) than that of plain flagellar proteins. There were no immunochemical relationships among Pseudomonas rhodos, Rhizobium lupini, and R. meliloti complex flagella, suggesting that the latter represent a new class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号