首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey for planktonic sea louse larvae was carried out in Loch Shieldaig, Scotland, between 2002 and 2006, and spanned 2 successive production cycles (Cycles 1 and 2) at a local Atlantic salmon Salmo salar L. farm. The vast majority of the caligid copepodids recovered were Lepeophtheirus salmonis; however, the methodology was unable to determine the species of the caligid nauplii. Greatest densities of nauplii were found at the sampling station adjacent to the salmon farm, and larval densities were low during the fallow period of both cycles. Peaks in nauplius densities occurred around the same time in the 2 cycles, but the peaks were significantly lower during Cycle 2 than Cycle 1. Lepeophtheirus salmonis copepodid densities varied temporally, but not spatially. During most of Cycle 2, copepodid densities were significantly lower than those recovered during Cycle 1. Numbers of gravid L. salmonis at the local salmon farm correlated significantly with densities of louse nauplii and L. salmonis copepodids in the water at time lags of 0 and 1 wk, and 1 and 2 wk, respectively. This survey demonstrated a reduction in densities of L. salmonis larvae in the plankton (an indication of L. salmonis infectious pressure) between the 2 cycles and indicated that the farm was an important source of L. salmonis larvae. The application of anti-louse treatments using emamectin benzoate reduced the numbers of gravid L. salmonis at the farm, and this was the main factor influencing the apparent reduction in L. salmonis infectious pressure in the loch between cycles.  相似文献   

2.
The objective of the present study was to understand how and when the frontal filament (FF) in the salmon louse Lepeophtheirus salmonis is produced by examining the sequence of morphological changes leading to FF production in the copepodid and early chalimus stages. Atlantic salmon (Salmo salar) were heavily infested with newly molted copepodids. Sea lice were sampled prior to infestation and at 1, 2, 3, 4, 5, 6, 7, 8, and 9 days postinfestation. FF morphogenesis from newly molted copepodid to chalimus II, i.e., through 2 molts, was studied using high-resolution light microscopy of serial transverse and sagittal resin sections. Three groups of cells, identified as A, B, and C, are thought to be involved in the production of the secretions (S1 and S2) that form the filament material. The amount and shape of S1 and S2 and their association with B- and C-group cells, respectively, changed with the molt cycle. The following scenario for FF development is proposed: the first secretion to form after the molt for both copepodid and chalimus stages is S1, and it is formed by B-group cells and becomes the basal plate of the external FE C-group cells produce S2 during mid-intermolt to premolt stage. The S2 becomes the stem of the external FE In premolt larvae, S1 and S2 were contained within a cuticle-lined invagination that had a form similar to that of the extruded filament. The axial duct present in both copepodid and chalimus originates from the A-group cells and probably carries a secretion used to attach the filament to the host. This study provides strong evidence that L. salmonis produces a new filament with each molt, creating the possibility of using a sea lice control method based on interference with filament production more feasible.  相似文献   

3.
Experiments were conducted to determine the effects of sea lice, Lepeophtheirus salmonis, on non-specific defence mechanisms in Atlantic salmon, Salmo salar, by experimentally infesting hatchery-reared 1 and 2 year old post-smolts, S1 and S2, with laboratory grown infective copepodids at moderate to high infection intensities ranging from 15-285 lice per fish. The effects of sea lice-induced stress were investigated by measuring the blood levels of cortisol and glucose as indicators of primary and secondary stress responses, and by changes in macrophage respiratory burst activity and phagocytosis as indicators of tertiary stress responses as well as non-specific defence mechanisms. Fish were sampled prior to sea lice infestation at day 0 and at days 3, 7, 14 and 21 post-infestation. Sea lice were at copepodid stage at day 3, at chalimus stages at days 7 and 14, and at pre-adult stage at day 21. Blood levels of cortisol and glucose were found to be significantly increased at day 21 in fish-infested with the highest levels. Macrophage respiratory burst and phagocytic activities were found to be significantly decreased only at day 21. These results indicate that sea lice do not suppress host defence mechanisms during the earlier stages of infestation. They do have effects on the development of chronic stress and on the host non-specific defence mechanisms soon after the lice reach the pre-adult stage.  相似文献   

4.
The consequences of high (735 copepodids fish-1) and low (243 copepodids fish-1) level exposures of size-matched juvenile pink and chum salmon to Lepeophtheirus salmonis copepodids were examined. At both levels of exposure the prevalence and abundance of L. salmonis was significantly higher on chum salmon. In addition, the weight of exposed chum salmon following the high exposure was significantly less than that of unexposed chum salmon. At both exposures, the haematocrit of exposed chum salmon was significantly less than that of unexposed chum. Neither weight nor haematocrit of pink salmon was affected by exposures at these levels. Despite the presence of microscopic inflammatory lesions associated with attachment of L. salmonis on the epithelium of gill and fin of both salmon species, there were no mortalities following either exposure. A transient cortisol response was observed in chum salmon 21 d after low exposure. An earlier and quantitatively higher expression of the proinflammatory genes interleukin-8 (IL-8), tumour necrosis factor alpha-1 (TNFalpha-1) and interleukin-1beta (IL-1beta) in fin and head kidney of pink salmon suggested a mechanism of more rapid louse rejection in this species. Together, these observations indicate a relatively enhanced innate resistance to L. salmonis in the juvenile pink salmon compared with the juvenile chum salmon.  相似文献   

5.
The physiological effects of episodic pH fluctuations on Atlantic salmon Salmo salar smolts in eastern Maine, U.S.A., were investigated. During this study, S. salar smolts were exposed to ambient stream-water chemistry conditions at nine sites in four catchments for 3 and 6 day intervals during the spring S. salar smolt migration period. Plasma chloride, plasma glucose, gill aluminium and gill Na(+)- and K(+)-ATPase levels in S. salar smolts were assessed in relation to ambient stream-water chemistry during this migration period. Changes in both plasma chloride and plasma glucose levels of S. salar smolts were strongly correlated with stream pH, and S. salar smolt mortality occurred in one study site with ambient stream pH between 5·6 and 5·8 during the study period. The findings from this study suggest that physiological effects on S. salar smolts are strongly correlated with stream pH and that in rivers and streams with low dissolved organic carbon (DOC) concentrations the threshold for physiological effects and mortality probably occurs at a higher pH and shorter exposure period than in rivers with higher DOC. Additionally, whenever an acidification event in which pH drops below 5·9 coincides with S. salar smolt migration in eastern Maine rivers, there is potential for a significant reduction in plasma ions of S. salar smolts.  相似文献   

6.
The host specificity of Lepeophtheirus pectoralis (Müller) was examined experimentally by exposing different fish species to infection by artificially reared copepodid larvae. Copepodids which were hatched from eggs of adults parasitic on plaice ( platessae copepodids) preferred plaice to all other fishes tested, whereas copepodids which were hatched from eggs of adults parasitic on flounder ( flesi copepodids) preferred flounder to all other fish species. These behavioural differences suggest that two strains of L. pectoralis exist, one ( platessae ) adapted to plaice as its host and the other ( flesi ) to flounder. Comparison of an experimentally derived order of host preference with a table of occurrence obtained from the literature, suggests that a third strain of L. pectoralis , adapted to dab as its host, might also occur.
The process of infection by L. pectoralis copepodids is also described. It comprises a host location phase, during which the copepodid enters the habitat of its flatfish hosts and locates a host individual, and an attachment phase. The host location phase appears to be governed by changes in the activity of the copepodid and by its positively rheotactic response to water currents produced by the host. The attachment phase is probably based on the response of the copepodid to chemical factors produced by the host.  相似文献   

7.
Infections with sea lice species belonging to Lepeophtheirus and Caligus are reported from examinations of 1,309 three-spine sticklebacks collected in coastal British Columbia. Over 97% of the 19,960 Lepeophtheirus specimens and nearly 96% of the 2,340 Caligus specimens were in the copepodid and chalimus developmental stages. The parasites were identified as Lepeophtheirus salmonis and Caligus clemensi based on morphology of adult stages. Between 1,763 and 1,766 base pairs (bp) of 18S rDNA from adult specimens collected from sticklebacks and salmon differed from the GenBank L. salmonis reference sequence by a single bp and were distinct from those of 2 other Lepeophtheirus species. A 530-bp region of 18S rDNA from chalimus stages of Lepeophtheirus obtained from sticklebacks and salmon was identical to that of the L. salmonis reference sequence. The three-spine stickleback is a new host record for L. salmonis. The prevalence of L. salmonis was 83.6% and that of C. clemensi was 42.8%. The intensities of these infections were 18.3 and 4.2, respectively. There was no significant relationship between sea lice abundance and stickleback condition factor. Significant spatial and temporal variations both in abundance of sea lice and surface seawater salinities were measured. The abundance of both sea lice species was lowest in zones in which surface seawater salinity was also lowest. Sticklebacks appear to serve as temporary hosts, suggesting a role of this host in the epizootiology of L. salmonis. The stickleback may be a useful sentinel species with which to monitor spatial and temporal changes in the abundance of L. salmonis and C. clemensi.  相似文献   

8.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

9.
The anadromous life cycle of Atlantic salmon Salmo salar involves long migrations to novel environments and challenging physiological transformations when moving between salt-free and salt-rich waters. In this article, (1) environmental factors affecting the migration behaviour and survival of smolts and post-smolts during the river, estuarine and early marine phases, (2) how behavioural patterns are linked to survival and (3) how anthropogenic factors affect migration and survival are synthesized and reviewed based on published literature. The timing of the smolt migration is important in determining marine survival. The timing varies among rivers, most likely as a consequence of local adaptations, to ensure sea entry during optimal periods. Smolts and post-smolts swim actively and fast during migration, but in areas with strong currents, their own movements may be overridden by current-induced transport. Progression rates during the early marine migration vary between 0.4 and 3.0 body lengths s(-1) relative to the ground. Reported mortality is 0.3-7.0% (median 2.3) km(-1) during downriver migration, 0.6-36% (median 6.0) km(-1) in estuaries and 0.3-3.4% (median 1.4) km(-1) in coastal areas. Estuaries and river mouths are the sites of the highest mortalities, with predation being a common cause. The mortality rates varied more among studies in estuaries than in rivers and marine areas, which probably reflects the huge variation among estuaries in their characteristics. Behaviour and survival during migration may also be affected by pollution, fish farming, sea lice Lepeophtheirus salmonis, hydropower development and other anthropogenic activities that may be directly lethal, delay migration or have indirect effects by inhibiting migration. Total mortality reported during early marine migration (up to 5-230 km from the river mouths) in the studies available to date varies between 8 and 71%. Hence, the early marine migration is a life stage with high mortalities, due to both natural and human influences. Factors affecting mortality during the smolt and post-smolt stages contribute to determine the abundance of spawner returns. With many S. salar populations in decline, increased mortality at these stages may considerably contribute to limit S. salar production, and the consequences of human-induced mortality at this stage may be severe. Development of management actions to increase survival and fitness at the smolt and post-smolt stages is crucial to re-establish or conserve wild populations.  相似文献   

10.
11.
The influence of infection with the juvenile stages of the sea louse, Lepeophtheirus salmonis (Kr?yer) on the response of rainbow trout Oncorhynchus mykiss (Walbaum) to a net confinement protocol was investigated. The experiment consisted of two groups of seawater-adapted rainbow trout, one which was exposed to a total of 4000 nauplii/copepodid stages of L. salmonis 30, 25 and 14 days prior to confinement. Confinement elicited a greater stress response in the lice-exposed fish, than in the controls, as seen by higher plasma cortisol and glucose levels. A reduced spleen somatic index in exposed fish following 6 h confinement coincided with increased erythrocyte and lymphocyte numbers in the blood. Circulating lymphocyte numbers were significantly reduced in both groups 24 h post-confinement, when a lower alternative complement activity was recorded in control fish. Prior to confinement, lice-exposed fish had an elevated serum lysozyme activity and reduced oxygen radical production by blood leukocytes. Following confinement, lysozyme activity was gradually reduced in lice-exposed trout. During confinement, oxygen radical production decreased in control fish and increased in infested fish. Overall, transient exposure to juvenile lice altered the response to a second stressor, which has implications for management procedures of L. salmonis exposed fish.  相似文献   

12.
This study investigates the physiological responses in the hermatypic coral Galaxea fascicularis exposed to salinity stress (from 37 ppt to 15 ppt) for 12 h, combined effects of reduced salinity (from 37 ppt to 20 ppt) and two temperatures (26 °C and 32 °C) for 12 h and combined effects of reduced salinity (from 37 ppt to 25 ppt) and two temperatures (26 °C and 29.5 °C) for 10 d. The results demonstrate that the coral is tolerant to 12 h exposure to extremely low salinity (15 ppt). The study also shows that combined effects of temperature and low salinity aggravate the damage on the photosynthesis of the symbiotic dinoflagellates in 12 h exposure to 20 ppt sea water. This study suggests that high temperature (29.5 °C) aggravates the damage of trivially low salinity (30 ppt) on the holobiont (the coral and its symbiotic dinoflagellates) in 10 d exposure. However, high temperature (29.5 °C) may have an antagonistic effect between temperature and low salinity (25 ppt) on metabolism of the holobiont. Based on the above results, we suggest that (1) the true mechanism of corals exposed to combined effects of low salinity and high temperature is complicated. This calls for more studies on different corals. Future studies should aim at investigating long-term low-level stress in order to simulate in situ conditions more accurately; (2) when corals exposed to extremely severe combined stressors for short-term or trivially severe stressors for relative long-term, the combined effects of two stressors (such as low salinity and high temperature) may be negative, otherwise, the effects may be additive.  相似文献   

13.
14.
Twenty-eight hatchery-reared Atlantic salmon ( Salmo salar L.) smolts were tracked as they left a release ladder and moved through the estuary of the Lussa River and out to sea. Smolt passage through the estuary was fastest at high water and slowest at low water; the reverse of the situation observed for passive objects floating in the surface water layer. At low tide the water channel was effectively a freshwater stream and the smolts behaved in it accordingly, attempting to maintain station. At high water smolts moved downstream with the current close to the water surface. The degree of variation in individual speed through the estuary was the main difference observed between immature S2, stripped mature male S2, unstripped mature male S2 and S1 smolts. Smolts moved directly out of the estuary with no apparent check in their progress. Sea contact times in the vicinity of the river mouth, for both passive objects and smolts, were longest around high water and shortest around low tide. In the sea no differences were observed in the behaviour of the four different smolt types. While passive objects showed no tendency to move off in a particular direction, smolts showed a significant inclination to head off on a southerly bearing.  相似文献   

15.
As part of an investigation of the biochemical interactions between the salmon louse Lepeophtheirus salmonis and Atlantic salmon Salmo salar, we characterized protease activity in the skin mucus of noninfected Atlantic salmon and Atlantic salmon infected with L. salmonis and in an L. salmonis whole-body homogenate. Zymography revealed that mucus from infected salmon contained a series of low-molecular-mass (17-22 kDa) serine proteases that were not present in the mucus of noninfected salmon. Based on molecular mass, inhibition studies, and affinity chromatography, the series of proteases was identified as being trypsin-like. Similar proteases were observed in the L. salmonis homogenate and in mucus from noninfected Atlantic salmon following a 1-hr incubation with live L. salmonis. An antibody raised against Atlantic salmon trypsin failed to recognize any proteases in the mucus of noninfected salmon or infected salmon or in the L. salmonis homogenate. Collectively, these findings suggest that the trypsin-like proteases present in the mucus of infected Atlantic salmon were produced by L. salmonis, possibly to aid in feeding and evasion of host immune responses.  相似文献   

16.
The Pacific white shrimp, Litopenaeus vannamei, acclimated to 30 ppt salinity, was transferred to either low (15 and 5 ppt), or high (45 ppt) salinity for 7 days. Hemolymph osmolality, branchial carbonic anhydrase activity, and total ninhydrin-positive substances (TNPS) in abdominal muscle were then measured for each condition. Hemolymph osmotic concentration was regulated slightly below ambient water osmolality in shrimp acclimated to 30 ppt. At 15 and 5 ppt, shrimp were strong hyper-osmotic regulators, maintaining hemolymph osmolality between 200 and 400 mOsm above ambient. Shrimp acclimated to 30 ppt and transferred to 45 ppt salinity were strong hypo-osmotic and hypo-ionic regulators, maintaining hemolymph osmolality over 400 mOsm below ambient. Branchial carbonic anhydrase (CA) activity was low (approximately 100 micromol CO(2) mg protein(-1) min(-1)) and uniform across all 8 gills in shrimp acclimated to 30 ppt, but CA activity increased in all gills after exposure to both low and high salinities. Anterior gills had the largest increases in CA activity, and levels of increase were approximately the same for low and high salinity exposure. Branchial CA induction appears to be functionally important in both hyper- and hypo-osmotic regulations of hemolymph osmotic concentrations. Abdominal muscle TNPS made up between 19 and 38% of the total intracellular osmotic concentration in shrimp acclimated to 5, 15, and 30 ppt. TNPS levels did not change across this salinity range, over which hemolymph osmotic concentrations were tightly regulated. At 45 ppt, hemolymph osmolality increased, and muscle TNPS also increased, presumably to counteract intracellular water loss and restore cell volume. L. vannamei appears to employ mechanisms of both extracellular osmoregulation and intracellular volume regulation as the basis of its euryhalinity.  相似文献   

17.
The relationship between branchial carbonic anhydrase (CA) activity, CA gene expression and salinity, and potential mechanisms of regulation, was investigated in the euryhaline green crab, Carcinus maenas, acclimated to 33 ppt and transferred to 10 ppt, and the stenohaline rock crab, Cancer irroratus, acclimated to 32 ppt and transferred to 18 ppt. CA activity in green crabs acclimated to high and low salinity was a function of CA mRNA expression, with low salinity exposure resulting in an increase in both CA expression and activity. Eyestalk ablation (ESA) in green crabs acclimated to high salinity resulted in an increase in CA expression in the posterior, ion-transporting gills, in the absence of the low salinity stimulus. There were no changes in CA activity or expression in the anterior, respiratory gills. ESA also potentiated low salinity-stimulated CA induction, again, only in posterior gills. There were no changes in CA activity in any gills of Cancer irroratus, in response to either ESA or low salinity. These results suggest that CA expression in euryhaline, osmoregulating species, is under inhibitory regulation by a putative repressor found in the eyestalk, and that this mechanism is absent in stenohaline, osmoconforming species. CA expression is maintained at low, baseline levels in crabs acclimated to high salinity by the presence and action of this compound. The effects of the repressor appear to be reduced upon exposure to low salinity, allowing CA induction to occur.  相似文献   

18.
In studies of the salmon louse Lepeophtheirus salmonis (Kr?yer, 1837), experimental design is complicated by a highly variable and unpredictable lice loss among common experimental tanks and a substantial rate of host transfer within tanks. When fish hosting L. salmonis are maintained in individual tanks, unspecific effects such as host transfer, louse predation by cohabitant hosts and agonistic host interactions are excluded. This study suggests that it is possible to maintain Atlantic salmon Salmo salar infected with L. salmonis in an array of small, single fish tanks and, by doing so, provide an experimental system in which the loss of motile pre-adult and adult stages of L. salmonis is predictable. Here, lice can be collected shortly after detachment for detailed studies or to provide mortality curves of lice from individual fish. This represents an experimental approach improving precision in studies of L. salmonis, such as drug and vaccine efficacy assays, RNA interference (RNAi) studies and host-parasite interactions. The natural loss of pre-adult/adult L. salmonis from the system was higher for males than females. The loss of females appeared to be a process somewhat selective against large individuals. Inherent qualities of the host appeared to be of little significance in explaining the variability in loss of preadult/adult lice.  相似文献   

19.
Taura syndrome virus (TSV) is one of the most important shrimp viruses affecting farmed shrimp worldwide. After an acute phase during which the likelihood of mortality is elevated, infected shrimp enter a chronic phase during which shrimp appear to resume normal behavior and display no gross signs of infection. This study was designed to determine if chronically TSV-infected shrimp Litopenaeus vannamei are compromised by the infection. Specifically we investigated whether chronically infected shrimp could tolerate a drop in salinity as strongly as uninfected shrimp. The study consisted of 3 trials that compared survival of uninfected and chronically TSV-infected L. vannamei after drops in salinity from 24 ppt to salinities varying from 18 to 0 ppt. Logistic regression detected a significant effect of TSV infection on survival of chronically infected shrimp (p < 0.05). Salinity drops from 24 ppt to 3 and 6 ppt resulted in statistically different survivals (p < 0.05). Survival rates were similar among groups for salinity drops to greater than 6 ppt or less than 3 ppt. Salinities at which 50% of the shrimp died (LC50) were 3.06 ppt for the uninfected and 6.65 ppt for the chronically infected groups. Moreover, histopathological analysis of chronically infected shrimp that were moribund or recently dead showed no signs of having reverted to the acute stage of the disease. These results suggest that chronically infected shrimp are not able to tolerate a salinity drop as strongly as uninfected shrimp.  相似文献   

20.
BackgroundCoastal wetlands are threatened by the increased salinity that may result from sea level rise. Salinity stress alters species zonation patterns through changes in competitive outcome between species differing in salinity tolerance. This study therefore aimed to understand how salinity and light affect two dominant and competing coastal wetland grasses that differ in salt tolerance, height and photosynthetic metabolism.MethodsThe C4 species Spartina anglica and the C3 species Phragmites australis were grown at five salinity levels (0, 7, 14, 21 and 28 ppt) and two light fluxes (100 % and 50 % of natural daylight) in an outdoor experimental setup for 102 d with full access to nutrients.Key ResultsSalinity reduced the biomass, height and shoot density of P. australis from 81.7 g dry weight (DW), 0.73 m and 37 shoots per pot at a salinity of 0 ppt to 16.8 gDW, 0.3 m and 14 shoots per pot at a salinity of 28 ppt. Biomass, height and shoot density of S. anglica did not respond or were only slightly reduced at the highest salinity of 28 ppt. High salinity also resulted in a higher tissue concentration of N and P in P. australis. Both species had low ability to acclimate to the lower light flux. Shade acclimation in S. anglica occurred via modest changes in specific leaf area, pigment content and biomass allocation.ConclusionsHigh salinity reduced traits important for light competition and increased the nutrient concentration in P. australis leaf and root biomass, while this was overall unaffected in S. anglica. This is likely to reduce the competitive ability of P. australis over S. anglica for light because at high salinities the former cannot effectively shade the lower-growing S. anglica. Neither species effectively acclimates to shade, which could explain why S. anglica does not occur in the understorey of P. australis at low salinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号