首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A 5.9-kb DNA fragment was cloned from Pseudomonas aeruginosa PA103 by its ability to functionally complement a fur mutation in Escherichia coli. A fur null mutant E. coli strain that contains multiple copies of the 5.9-kb DNA fragment produces a 15-kDa protein which cross-reacts with a polyclonal anti-E. coli Fur serum. Sequencing of a subclone of the 5.9-kb DNA fragment identified an open reading frame predicted to encode a protein 53% identical to E. coli Fur and 49% identical to Vibrio cholerae Fur and Yersinia pestis Fur. While there is extensive homology among these Fur proteins, Fur from P. aeruginosa differs markedly at its carboxy terminus from all of the other Fur proteins. It has been proposed that this region is a metal-binding domain in E. coli Fur. A positive selection procedure involving the isolation of manganese-resistant mutants was used to isolate mutants of strain PA103 that produce altered Fur proteins. These manganese-resistant Fur mutants constitutively produce siderophores and exotoxin A when grown in concentrations of iron that normally repress their production. A multicopy plasmid carrying the P. aeruginosa fur gene restores manganese susceptibility and wild-type regulation of exotoxin A and siderophore production in these Fur mutants.  相似文献   

2.
To express recombinant forms of Pseudomonas aeruginosa exotoxin A in high yield, we have developed a nontoxigenic strain of P. aeruginosa derived from the hypertoxigenic strain PA103. The nontoxigenic strain, designated PA103A, was produced by the excision marker rescue technique to replace the toxA structural gene in PA103 with an insertionally inactivated toxA gene. The PA103A strain (ToxA-) was used subsequently as the host strain for the expression and production of several recombinant versions of exotoxin A, and the results were compared with exotoxin A production in other P. aeruginosa and Escherichia coli strains. Use of the PA103A strain transformed with the high-copy-number pRO1614 plasmid bearing various toxA alleles resulted in final purification yields of exotoxin A averaging 23 mg/liter of culture. By comparison, exotoxin A production in other expression systems and host strains yields approximately 1/4 to 1/10 as much toxin.  相似文献   

3.
4.
5.
The product of Pseudomonas aeruginosa regA gene acts as a positive regulator of exotoxin A expression. The protein, RegA, was overproduced in E. coli transformed with an expression vector containing the regA gene. The overproduced RegA accumulated in E. coli in the form of inclusion bodies. The latter were isolated and served as a source of antigen for raising polyclonal antibodies. The antibodies reacted specifically with a P. aeruginosa protein whose molecular weight corresponded to that predicted for RegA from its known DNA sequence, and whose response to modulating factors matched that expected for RegA. The immunodetectable RegA was localized in the membrane fraction of P. aeruginosa strain PA103.  相似文献   

6.
7.
8.
The yield of exotoxin A from Pseudomonas aeruginosa has been shown to be strain-dependent. Exotoxin A production requires the presence of the positive regulatory gene, regA. We cloned the regA genetic locus from the prototypical P. aeruginosa strain PAO1 and examined its ability to influence exotoxin A yields compared to the same region cloned from the hypertoxin-producing strain, PA103. The P. aeruginosa regA mutant strain, PA103-29, containing the PAO1 regA locus in trans produced approximately five to seven times less extracellular exotoxin A than PA103-29 containing the regA locus cloned from the hypertoxigenic strain, PA103. Nucleotide sequence analysis of the PAO1 regA locus revealed several differences, the most striking of which was the absence of a second open reading frame that was present in the analogous PA103 DNA. In addition, an amino acid substitution was found at position 144 of RegA (Thr in PAO1 and Ala in PA103). Recombinant molecules were constructed to test the contribution of each of these changes in nucleotide sequence on extracellular exotoxin A yields. The amino acid substitution in the PAO1 RegA protein was found not to affect overall exotoxin A yields. In contrast, the presence of the second open reading frame immediately downstream of the PA103 regA gene was found to influence extracellular exotoxin A yields. This open reading frame encodes a gene which we call regB. Nucleotide sequence analysis indicates that regB is 228 nucleotides in length and encodes a protein of 7527 Daltons. Our data suggest that regB is required for optimal exotoxin A production and its absence in strain PAO1 partially accounts for the difference in yield of extracellular exotoxin A between P. aeruginosa strains PAO1 and PA103.  相似文献   

9.
10.
Nucleotide sequence and Southern hybridization data revealed a mosaic genome organization in a region that extends several thousand base pairs upstream of the exotoxin A (toxA) gene in Pseudomonas aeruginosa. An interstrain comparison of DNA in this region showed a pattern of alternating segments of homologous and nonhomologous sequences. Two nonhomologous elements, approximately 1 kilobase pair upstream of the gene in strains PA103 and Ps388, were characterized in more detail. The sequence elements, denoted IS-PA-1 and IS-PA-2 for the different strains, are about 1,000 and 785 base pairs long, respectively, and have 5-base-pair direct repeats at their boundaries, consistent with their being DNA insertion sequences. The distribution of these elements in 34 different strains was determined. IS-PA-1 was found in a single copy upstream of toxA in half of the strains and was found in two copies in four of the strains. Some strains contained neither element, and one strain carried both. The genome of another strain, WR5, which lacks toxA, was shown to contain a 350-base-pair region that was highly homologous to DNA sequences located just upstream of toxA in other strains. The WR5 genome lacked several kilobase pairs of DNA that was found both upstream and downstream of this homologous region in the other strains.  相似文献   

11.
12.
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.  相似文献   

13.
The flagellin gene was isolated from a Pseudomonas aeruginosa PAO1 genomic bank by conjugation into a PA103 Fla- strain. Flagellin DNA was transferred from motile recipient PA103 Fla+ cells by transformation into Escherichia coli. We show that transformed E. coli expresses flagellin protein. Export of flagellin to the E. coli cell surface was suggested by positive colony blots of unlysed cells and by isolation of flagellin protein from E. coli supernatants.  相似文献   

14.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:22,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

15.
A mobilizable plasmid which carries the promoter for the exotoxin A (ETA) structural gene fused to lacZ was integrated into the chromosome of wild-type and mutant strains of Pseudomonas aeruginosa at the toxA locus by homologous recombination. beta-galactosidase synthesis in the strains (cointegrates) carrying the toxA-lacZ fusions was regulated like ETA synthesis is in P. aeruginosa. Two multicopy plasmids carrying a positive regulatory gene designated toxR were constructed which are identical except with respect to the orientation of toxR to the lacZ promoter on the plasmid. These plasmids were then introduced into P. aeruginosa cointegrate strains. When toxR was using its own promoter, synthesis of beta-galactosidase in the cointegrate strains was increased but the pattern of iron regulation was not altered. In contrast, when the lacZ promoter was directing synthesis of the toxR product in the cointegrate strains, iron regulation of beta-galactosidase and ETA synthesis were abolished.  相似文献   

16.
17.
18.
Using the broad-host-range plasmid vector pRO1614, we cloned a segment of the gene from Pseudomonas aeruginosa PA103 encoding the enzymatically active part of the exotoxin A protein. Expression of the cloned gene segment has been achieved both in Escherichia coli and in a nontoxigenic P. aeruginosa host, as assayed by the production of exotoxin A-related antigen and by the ability of the gene product to ADP-ribosylate elongation factor 2. Western blot hybridization analysis revealed a series of polypeptides antigenically related to exotoxin A, the largest of which had a molecular weight of ca. 50,000.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号