首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP-sensitive potassium (K(ATP)) channels are composed of an ATP-binding cassette (ABC) protein (SUR1, SUR2A or SUR2B) and an inwardly rectifying K(+) channel (Kir6.1 or Kir6.2). Like other ABC proteins, the nucleotide binding domains (NBDs) of SUR contain a highly conserved "signature sequence" (the linker, LSGGQ) whose function is unclear. Mutation of the conserved serine to arginine in the linker of NBD1 (S1R) or NBD2 (S2R) did not alter the ability of ATP or ADP (100 microM) to displace 8-azido-[(32)P]ATP binding to SUR1, or abolish ATP hydrolysis at NBD2. We co-expressed Kir6.2 with wild-type or mutant SUR in Xenopus oocytes and recorded the resulting currents in inside-out macropatches. The S1R mutation in SUR1, SUR2A or SUR2B reduced K(ATP) current activation by 100 microM MgADP, whereas the S2R mutation in SUR1 or SUR2B (but not SUR2A) abolished MgADP activation completely. The linker mutations also reduced (S1R) or abolished (S2R) MgATP-dependent activation of Kir6.2-R50G co-expressed with SUR1 or SUR2B. These results suggest that the linker serines are not required for nucleotide binding but may be involved in transducing nucleotide binding into channel activation.  相似文献   

2.
The ATP-sensitive potassium (K(ATP)(+)) channel is crucial for the regulation of insulin secretion from the pancreatic beta-cell, and mutations in either the sulfonylurea receptor type 1 (SUR1) or Kir6. 2 subunit of this channel can cause persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We analyzed the functional consequences of the PHHI missense mutation R1420C, which lies in the second nucleotide-binding fold (NBF2) of SUR1. Mild tryptic digestion of SUR1 after photoaffinity labeling allowed analysis of the nucleotide-binding properties of NBF1 and NBF2. Labeling of NBF1 with 8-azido-[alpha-(32)P]ATP was inhibited by MgATP and MgADP with similar K(i) for wild-type SUR1 and SUR1-R1420C. However, the MgATP and MgADP affinities of NBF2 of SUR1-R1420C were about 5-fold lower than those of wild-type SUR1. MgATP and MgADP stabilized 8-azido-ATP binding at NBF1 of wild-type SUR1 by interacting with NBF2, but this cooperative nucleotide binding was not observed for SUR1-R1420C. Studies on macroscopic currents recorded in inside-out membrane patches revealed that the SUR1-R1420C mutation exhibits reduced expression but does not affect inhibition by ATP or tolbutamide or activation by diazoxide. However, co-expression with Kir6.2-R50G, which renders the channel less sensitive to ATP inhibition, revealed that the SUR1-R1420C mutation increases the EC(50) for MgADP activation from 74 to 197 microm. We suggest that the lower expression of the mutant channel and the reduced affinity of NBF2 for MgADP may lead to a smaller K(ATP)(+) current in R1420C-PHHI beta-cells and thereby to the enhanced insulin secretion. We also propose a new model for nucleotide activation of K(ATP)(+) channels.  相似文献   

3.
K(ATP) channels, comprised of the pore-forming protein Kir6.x and the sulfonylurea receptor SURx, are regulated in an interdependent manner by adenine nucleotides, PIP2, and sulfonylureas. To gain insight into these interactions, we investigated the effects of mutating positively charged residues in Kir6.2, previously implicated in the response to PIP2, on channel regulation by adenine nucleotides and the sulfonylurea glyburide. Our data show that the Kir6.2 "PIP2-insensitive" mutants R176C and R177C are not reactivated by MgADP after ATP-induced inhibition and are also insensitive to glyburide. These results suggest that R176 and R177 are required for functional coupling to SUR1, which confers MgADP and sulfonylurea sensitivity to the K(ATP) channel. In contrast, the R301C and R314C mutants, which are also "PIP2-insensitive," remained sensitive to stimulation by MgADP in the absence of ATP and were inhibited by glyburide. Based on these findings, as well as previous data, we propose a model of the K(ATP) channel whereby in the presence of ATP, the R176 and R177 residues on Kir6.2 form a specific site that interacts with NBF1 bound to ATP on SUR1, promoting channel opening by counteracting the inhibition by ATP. This interaction is facilitated by binding of MgADP to NBF2 and blocked by binding of sulfonylureas to SUR1. In the absence of ATP, since K(ATP) channels are not blocked by ATP, they do not require the counteracting effect of NBF1 interacting with R176 and R177 to open. Nevertheless, channels in this state remain activated by MgADP. This effect may be explained by a direct stimulatory interaction of NBF2/MgADP moiety with another region of Kir6.2 (perhaps the NH2 terminus), or by NBF2/MgADP still promoting a weak interaction between NBF1 and Kir6.2 in the absence of ATP. The region delimited by R301 and R314 is not involved in the interaction with NBF1 or NBF2, but confers additional PIP2 sensitivity.  相似文献   

4.
The sensitivity of K(ATP) channels to high-affinity block by sulfonylureas and to stimulation by K(+) channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) profoundly antagonized ATP inhibition of K(ATP) channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP(2) drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K(ATP) channels (Kir6. 2[DeltaN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6. 2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP(2) also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP(2) application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP(2). The net effect of increasing open state stability, either by PIP(2) or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine.  相似文献   

5.
ATP-sensitive K(+) (K(ATP)) channels, comprised of pore-forming Kir6.2 and regulatory SUR1 subunits, play a critical role in regulating insulin secretion. Binding of ATP to Kir6.2 inhibits, whereas interaction of MgATP with SUR1 activates, K(ATP) channels. We tested the functional effects of two Kir6.2 mutations (Y330C, F333I) that cause permanent neonatal diabetes mellitus, by heterologous expression in Xenopus oocytes. Both mutations reduced ATP inhibition and increased whole-cell currents, which in pancreatic beta-cells is expected to reduce insulin secretion and precipitate diabetes. The Y330C mutation reduced ATP inhibition both directly, by impairing ATP binding (and/or transduction), and indirectly, by stabilizing the intrinsic open state of the channel. The F333I mutation altered ATP binding/transduction directly. Both mutations also altered Kir6.2/SUR1 interactions, enhancing the stimulatory effect of MgATP (which is mediated via SUR1). This effect was particularly dramatic for the Kir6.2-F333I mutation, and was abolished by SUR1 mutations that prevent MgATP binding/hydrolysis. Further analysis of F333I heterozygous channels indicated that at least three SUR1 must bind/hydrolyse MgATP to open the mutant K(ATP) channel.  相似文献   

6.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg(2+)) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. (86)Rb(+) flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of (86)Rb(+) efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC 50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

7.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

8.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

9.
The ATP-sensitive K-channel (K-ATP channel) plays a key role in insulin secretion from pancreatic beta-cells. It is closed by glucose metabolism, which stimulates insulin secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and Mg-ADP, which inhibit and potentiate channel activity, respectively. The beta-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. We have mutated (independently or together) two lysine residues in the Walker A (W(A)) motifs of the first (K719A) and second (K1384M) nucleotide-binding domains (NBDs) of SUR1. These mutations are expected to inhibit nucleotide hydrolysis. Our results indicate that the W(A) lysine of NBD1 (but not NBD2) is essential for activation of K-ATP currents by diazoxide. The potentiatory effects of Mg-ADP required the presence of the W(A) lysines in both NBDs. Mutant currents were slightly more sensitive to ATP than wild-type currents. Metabolic inhibition led to activation of wild-type and K1384M currents, but not K719A or K719A/K1384M currents, suggesting that there may be a factor in addition to ATP and ADP which regulates K-ATP channel activity.  相似文献   

10.
K(ATP) channels, (SUR1/Kir6.2)(4) (sulfonylurea receptor type 1/potassium inward rectifier type 6.2) respond to the metabolic state of pancreatic β-cells, modulating membrane potential and insulin exocytosis. Mutations in both subunits cause neonatal diabetes by overactivating the pore. Hyperactive channels fail to close appropriately with increased glucose metabolism; thus, β-cell hyperpolarization limits insulin release. K(ATP) channels are inhibited by ATP binding to the Kir6.2 pore and stimulated, via an uncertain mechanism, by magnesium nucleotides at SUR1. Glibenclamide (GBC), a sulfonylurea, was used as a conformational probe to compare nucleotide action on wild type versus Q1178R and R1182Q SUR1 mutants. GBC binds with high affinity to aporeceptors, presumably in the inward facing ATP-binding cassette configuration; MgATP reduces binding affinity via a shift to the outward facing conformation. To determine nucleotide affinities under equilibrium, non-hydrolytic conditions, Mg(2+) was eliminated. A four-state equilibrium model describes the allosteric linkage. The K(D) for ATP(4-) is ~1 versus 12 mM, Q1178R versus wild type, respectively. The linkage constant is ~10, implying that outward facing conformations bind GBC with a lower affinity, 9-10 nM for Q1178R. Thus, nucleotides cannot completely inhibit GBC binding. Binding of channel openers is reported to require ATP hydrolysis, but diazoxide, a SUR1-selective agonist, concentration-dependently augments ATP(4-) action. An eight-state model describes linkage between diazoxide and ATP(4-) binding; diazoxide markedly increases the affinity of Q1178R for ATP(4-) and ATP(4-) augments diazoxide binding. NBD2, but not NBD1, has a higher affinity for ATP (and ADP) in mutant versus wild type (with or without Mg(2+)). Thus, the mutants spend more time in nucleotide-bound conformations, with reduced affinity for GBC, that activate the pore.  相似文献   

11.
Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.  相似文献   

12.
Fundamental to the metabolic sensor function of ATP-sensitive K(+) (K(ATP)) channels is the sulfonylurea receptor. This ATP-binding cassette protein, which contains nucleotide binding domains (NBD1 and NBD2) with conserved Walker motifs, regulates the ATP sensitivity of the pore-forming Kir6.2 subunit. Although NBD2 hydrolyzes ATP, a property essential in K(ATP) channel gating, the role of NBD1, which has limited catalytic activity, if at all, remains less understood. Here, we provide functional evidence that cooperative interaction, rather than the independent contribution of each NBD, is critical for K(ATP) channel regulation. Gating of cardiac K(ATP) channels by distinct conformations in the NBD2 ATPase cycle, induced by gamma-phosphate analogs, was disrupted by point mutation not only of the Walker motif in NBD2 but also in NBD1. Cooling membrane patches to decelerate the intrinsic ATPase activity counteracted ATP-induced K(ATP) channel inhibition, an effect that mimicked stabilization of the MgADP-bound posthydrolytic state at NBD2 by the gamma-phosphate analog orthovanadate. Temperature-induced channel activation was abolished by mutations that either prevent stabilization of MgADP at NBD2 or ATP at NBD1. These findings provide a paradigm of K(ATP) channel gating based on integration of both NBDs into a functional unit within the multimeric channel complex.  相似文献   

13.
Mutations in the sulfonylurea receptor 1 (SUR1), a subunit of ATP-sensitive potassium (K(ATP)) channels, cause familial hyperinsulinism. One such mutation, deletion of phenylalanine 1388 (DeltaPhe-1388), leads to defects in both trafficking and MgADP response of K(ATP) channels. Here we investigated the biochemical features of Phe-1388 that control the proper trafficking and function of K(ATP) channels by substituting the residue with all other 19 amino acids. Whereas surface expression is largely dependent on hydrophobicity, channel response to MgADP is governed by multiple factors and involves the detailed architecture of the amino acid side chain. Thus, structural features in SUR1 required for proper channel function are distinct from those required for correct protein trafficking. Remarkably, replacing Phe-1388 by leucine profoundly alters the physiological and pharmacological properties of the channel. The F1388L-SUR1 channel has increased sensitivity to MgADP and metabolic inhibition, decreased sensitivity to glibenclamide, and responds to both diazoxide and pinacidil. Because this conservative amino acid substitution occurs in the SUR2A and SUR2B isoforms, the mutation provides a mechanism by which functional diversities in K(ATP) channels are generated.  相似文献   

14.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg2+) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. 86Rb+ flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of 86Rb+ efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

15.
The pancreatic ATP-sensitive potassium (K(ATP)) channel, a complex of four sulfonylurea receptor 1 (SUR1) and four potassium channel Kir6.2 subunits, regulates insulin secretion by linking metabolic changes to beta-cell membrane potential. Sulfonylureas inhibit K(ATP) channel activities by binding to SUR1 and are widely used to treat type II diabetes. We report here that sulfonylureas also function as chemical chaperones to rescue K(ATP) channel trafficking defects caused by two SUR1 mutations, A116P and V187D, identified in patients with congenital hyperinsulinism. Sulfonylureas markedly increased cell surface expression of the A116P and V187D mutants by stabilizing the mutant SUR1 proteins and promoting their maturation. By contrast, diazoxide, a potassium channel opener that also binds SUR1, had no effect on surface expression of either mutant. Importantly, both mutant channels rescued to the cell surface have normal ATP, MgADP, and diazoxide sensitivities, demonstrating that SUR1 harboring either the A116P or the V187D mutation is capable of associating with Kir6.2 to form functional K(ATP) channels. Thus, sulfonylureas may be used to treat congenital hyperinsulinism caused by certain K(ATP) channel trafficking mutations.  相似文献   

16.
Combined mutation of "catalytic carboxylates" in both nucleotide binding domains (NBDs) of P-glycoprotein generates a conformation capable of tight binding of 8-azido-ADP (Sauna, Z. E., Müller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry 41, 13989-14000). Here we characterized this conformation using pure mouse MDR3 P-glycoprotein and natural MgATP and MgADP. Mutants E552A/E1197A, E552Q/E1197Q, E552D/E1197D, and E552K/E1197K had low but real ATPase activity in the order Ala > Gln > Asp > Lys, emphasizing the requirement for Glu stereochemistry. Mutant E552A/E1197A bound MgATP and MgADP (1 mol/mol) with K(d) 9.2 and 92 microm, showed strong temperature sensitivity of MgATP binding and equal dissociation rates for MgATP and MgADP. With MgATP as the added ligand, 80% of bound nucleotide was in the form of ATP. None of these parameters was vanadate-sensitive. The other mutants showed lower stoichiometry of MgATP and MgADP binding, in the order Ala > Gln > Asp > Lys. We conclude that the E552A/E1197A mutation arrests the enzyme in a conformation, likely a stabilized NBD dimer, which occludes nucleotide, shows preferential binding of ATP, does not progress to a normal vanadate-sensitive transition state, but hydrolyzes ATP and releases ADP slowly. Impairment of turnover is primarily due to inability to form the normal transition state rather than to slow ADP release. The Gln, Asp, and Lys mutants are less effective at stabilizing the occluded nucleotide, putative dimeric NBD, conformation. We envisage that in wild-type the occluded nucleotide conformation occurs transiently after MgATP binds to both NBDs with associated dimerization, and before progression to the transition state.  相似文献   

17.
KATP channels were reconstituted in COSm6 cells by coexpression of the sulfonylurea receptor SUR1 and the inward rectifier potassium channel Kir6.2. The role of the two nucleotide binding folds of SUR1 in regulation of KATP channel activity by nucleotides and diazoxide was investigated. Mutations in the linker region and the Walker B motif (Walker, J.E., M.J. Saraste, M.J. Runswick, and N.J. Gay. 1982. EMBO [Eur. Mol. Biol. Organ.] J. 1:945–951) of the second nucleotide binding fold, including G1479D, G1479R, G1485D, G1485R, Q1486H, and D1506A, all abolished stimulation by MgADP and diazoxide, with the exception of G1479R, which showed a small stimulatory response to diazoxide. Analogous mutations in the first nucleotide binding fold, including G827D, G827R, and Q834H, were still stimulated by diazoxide and MgADP, but with altered kinetics compared with the wild-type channel. None of the mutations altered the sensitivity of the channel to inhibition by ATP4−. We propose a model in which SUR1 sensitizes the KATP channel to ATP inhibition, and nucleotide hydrolysis at the nucleotide binding folds blocks this effect. MgADP and diazoxide are proposed to stabilize this desensitized state of the channel, and mutations at the nucleotide binding folds alter the response of channels to MgADP and diazoxide by altering nucleotide hydrolysis rates or the coupling of hydrolysis to channel activation.  相似文献   

18.
ATP-dependent K(+) channels (K(ATP) channels) are composed of pore-forming subunits Kir6.x and sulfonylurea receptors (SURs). Cyanoguanidines such as pinacidil and P1075 bind to SUR and enhance MgATP binding to and hydrolysis by SUR, thereby opening K(ATP) channels. In the vasculature, openers of K(ATP) channels produce vasorelaxation. Some novel cyanoguanidines, however, selectively reverse opener-induced vasorelaxation, suggesting that they might be K(ATP) channel blockers. Here we have analyzed the interaction of the enantiomers of a racemic cyanoguanidine blocker, PNU-94750, with Kir6.2/SUR channels. In patch clamp experiments, the R-enantiomer (PNU-96293) inhibited Kir6.2/SUR2 channels (IC(50) approximately 50 nm in the whole cell configuration), whereas the S-enantiomer (PNU-96179) was a weak opener. Radioligand binding studies showed that the R-enantiomer was more potent and that it was negatively allosterically coupled to MgATP binding, whereas the S-enantiomer was weaker and positively coupled. Binding experiments also suggested that both enantiomers bound to the P1075 site of SUR. This is the first report to show that the enantiomers of a K(ATP) channel modulator affect channel activity and coupling to MgATP binding in opposite directions and that these opposite effects are apparently mediated by binding to the same (opener) site of SUR.  相似文献   

19.
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism.  相似文献   

20.
The A-loop is a recently described conserved region in the NBDs of ABC transporters [Ambudkar, S.V., Kim, I.-W., Xia, D. and Sauna, Z.E. (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett. 580, 1049-1055; Kim, I.W., Peng, X.H., Sauna, Z.E., FitzGerald, P.C., Xia, D., Muller, M., Nandigama, K. and Ambudkar, S.V. (2006) The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette. Biochemistry 45, 7605-7616]. In mouse P-glycoprotein (Abcb1a), the aromatic residue of the A-loop in both NBDs is a tyrosine: Y397 in NBD1 and Y1040 in NBD2. Another tyrosine residue (618 in NBD1 and 1263 in NBD2) also appears to lie in proximity to the ATP molecule. We have mutated residues Y397, Y618, Y1040, and Y1263 to tryptophan and analyzed the effect of these substitutions on transport properties, ATP binding, and ATP hydrolysis by Abcb1a (mouse Mdr3). Y618W and Y1263W enzymes had catalytic characteristics similar to WT Abcb1a. On the other hand, Y397W and Y1040W showed impaired transport and greatly reduced ATPase activity, including a approximately 10-fold increase in Km for MgATP. Thus, Y397 and Y1040 play an important role in Abcb1a catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号