首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kimber MS  Pai EF 《The EMBO journal》2000,19(7):1407-1418
We have determined the structure of the beta-carbonic anhydrase from the dicotyledonous plant Pisum sativum at 1.93 A resolution, using a combination of multiple anomalous scattering off the active site zinc ion and non-crystallographic symmetry averaging. The mol- ecule assembles as an octamer with a novel dimer of dimers of dimers arrangement. Two distinct patterns of conservation of active site residues are observed, implying two potentially mechanistically distinct classes of beta-carbonic anhydrases. The active site is located at the interface between two monomers, with Cys160, His220 and Cys223 binding the catalytic zinc ion and residues Asp162 (oriented by Arg164), Gly224, Gln151, Val184, Phe179 and Tyr205 interacting with the substrate analogue, acetic acid. The substrate binding groups have a one to one correspondence with the functional groups in the alpha-carbonic anhydrase active site, with the corresponding residues being closely superimposable by a mirror plane. Therefore, despite differing folds, alpha- and beta-carbonic anhydrase have converged upon a very similar active site design and are likely to share a common mechanism.  相似文献   

2.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase) uses PP(i) as an energy donor and requires free Mg(2+) for enzyme activity and stability. To determine the catalytic domain, we analyzed charged residues (Asp(253), Lys(261), Glu(263), Asp(279), Asp(283), Asp(287), Asp(723), Asp(727), and Asp(731)) in the putative PP(i)-binding site and two conserved acidic regions of mung bean V-PPase by site-directed mutagenesis and heterologous expression in yeast. Amino acid substitution of the residues with alanine and conservative residues resulted in a marked decrease in PP(i) hydrolysis activity and a complete loss of H(+) transport activity. The conformational change of V-PPase induced by the binding of the substrate was reflected in the susceptibility to trypsin. Wild-type V-PPase was completely digested by trypsin but not in the presence of Mg-PP(i), while two V-PPase mutants, K261A and E263A, became sensitive to trypsin even in the presence of the substrate. These results suggest that the second acidic region is also implicated in the substrate hydrolysis and that at least two residues, Lys(261) and Glu(263), are essential for the substrate-binding function. From the observation that the conservative mutants K261R and E263D showed partial activity of PP(i) hydrolysis but no proton pump activity, we estimated that two residues, Lys(261) and Glu(263), might be related to the energy conversion from PP(i) hydrolysis to H(+) transport. The importance of two residues, Asp(253) and Glu(263), in the Mg(2+)-binding function was also suggested from the trypsin susceptibility in the presence of Mg(2+). Furthermore, it was found that the two acidic regions include essential common motifs shared among the P-type ATPases.  相似文献   

3.
d- and l-captopril are competitive inhibitors of metallo-beta-lactamases. For the enzymes from Bacillus cereus (BcII) and Aeromonas hydrophila (CphA), we found that the mononuclear enzymes are the favored targets for inhibition. By combining results from extended x-ray absorption fine structure, perturbed angular correlation of gamma-rays spectroscopy, and a study of metal ion binding, we derived that for Cd(II)1-BcII, the thiolate sulfur of d-captopril binds to the metal ion located at the site defined by three histidine ligand residues. This is also the case for the inhibited Co(II)1 and Co(II)2 enzymes as observed by UV-visible spectroscopy. Although the single metal ion in Cd(II)1-BcII is distributed between both available binding sites in both the uninhibited and the inhibited enzyme, Cd(II)1-CphA shows only one defined ligand geometry with the thiolate sulfur coordinating to the metal ion in the site composed of 1 Cys, 1 His, and 1 Asp. CphA shows a strong preference for d-captopril, which is also reflected in a very rigid structure of the complex as determined by perturbed angular correlation spectroscopy. For BcII and CphA, which are representatives of the metallo-beta-lactamase subclasses B1 and B2, we find two different inhibitor binding modes.  相似文献   

4.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+). Molecular modeling of wild-type and mutant enzymes suggests that the lower catalytic efficiency of the Asp263Glu enzyme could be explained by a movement of the lateral chain of Lys(248), a critical catalytic residue, away from the reaction center. The effect on catalysis of introducing a negatively charged oxygen atom in place of N(epsilon-2) at position 225 is discussed in terms of altered binding energy of the intermediate enolpyruvate.  相似文献   

5.
We have investigated the influence of substrate binding on the zinc ion affinity of representatives from the three metallo-beta-lactamase subclasses, B1 (BcII from Bacillus cereus and BlaB from Chryseobacterium meningosepticum), B2 (CphA from Aeromonas hydrophila), and B3 (L1 from Stenotrophomonas maltophilia). By competition experiments with metal-free apoenzymes and chromophoric zinc chelators or EDTA, we determined the dissociation constants in the absence and presence of substrates. For the formation of the monozinc enzymes we determined constants of 1.8, 5.1, 0.007, and 2.6 nm in the absence and 13.6, 1.8, 1.2, and 5.7 pm in the presence of substrates for BcII, BlaB, CphA, and L1, respectively. A second zinc ion binds in the absence (presence) of substrates with considerably higher dissociation constants, namely 1.8 (0.8), 0.007 (0.025), 50 (1.9), and 0.006 (0.12) microm for BcII, BlaB, CphA, and L1, respectively. We have concluded that the apo form might be the prevailing state of most of the metallo-beta-lactamases under physiological conditions in the absence of substrates. Substrate availability induces a spontaneous self-activation due to a drastic decrease of the dissociation constants, resulting in the formation of active mononuclear enzymes already at picomolar free zinc ion concentrations. In the presence of substrates, the binuclear state of the enzymes only exists at unphysiologic high zinc concentrations and might be of no biological relevance. From the competition experiments with EDTA it is further concluded that the reactivation rate does not depend on the pool of free zinc ions but proceeds via the EDTA-Zn(II)-enzyme ternary complexes.  相似文献   

6.
The FucO protein, a member of the group III "iron-activated" dehydrogenases, catalyzes the interconversion between L-lactaldehyde and L-1,2-propanediol in Escherichia coli. The three-dimensional structure of FucO in a complex with NAD(+) was solved, and the presence of iron in the crystals was confirmed by X-ray fluorescence. The FucO structure presented here is the first structure for a member of the group III bacterial dehydrogenases shown experimentally to contain iron. FucO forms a dimer, in which each monomer folds into an alpha/beta dinucleotide-binding N-terminal domain and an all-alpha-helix C-terminal domain that are separated by a deep cleft. The dimer is formed by the swapping (between monomers) of the first chain of the beta-sheet. The binding site for Fe(2+) is located at the face of the cleft formed by the C-terminal domain, where the metal ion is tetrahedrally coordinated by three histidine residues (His200, His263, and His277) and an aspartate residue (Asp196). The glycine-rich turn formed by residues 96 to 98 and the following alpha-helix is part of the NAD(+) recognition locus common in dehydrogenases. Site-directed mutagenesis and enzyme kinetic assays were performed to assess the role of different residues in metal, cofactor, and substrate binding. In contrast to previous assumptions, the essential His267 residue does not interact with the metal ion. Asp39 appears to be the key residue for discriminating against NADP(+). Modeling L-1,2-propanediol in the active center resulted in a close approach of the C-1 hydroxyl of the substrate to C-4 of the nicotinamide ring, implying that there is a typical metal-dependent dehydrogenation catalytic mechanism.  相似文献   

7.
Botulinum neurotoxin type A (BoNT/A) light chain (LC) is a zinc endopeptidase that causes neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. The X-ray crystal structure of the toxin reveals that His223 and His227 of the Zn(2+) binding motif HEXXH directly coordinate the active site zinc. Two Glu residues (Glu224 and Glu262) are also part of the active site, with Glu224 coordinating the zinc via a water molecule whereas Glu262 coordinates the zinc directly as the fourth ligand. In the past we have investigated the topographical role of Glu224 by replacing it with Asp thus reducing the side chain length by 1.4 A that reduced the endopeptidase activity dramatically [L. Li, T. Binz, H. Niemann, and B.R. Singh, Probing the role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain, Biochemistry 39 (2000) 2399-2405]. In this study we have moved the Glu 224 laterally by a residue (HXEXH) to assess its positional influence on the endopeptidase activity, which was completely lost. The functional implication of Glu262 was investigated by replacing this residue with aspartate and glutamine using site-directed mutagenesis. Substitution of Glu262 with Asp resulted in a 3-fold decrease in catalytic efficiency. This mutation did not induce any significant structural alterations in the active site and did not interfere with substrate binding. Substitution of Glu262 with Gln however, dramatically impaired the enzymatic activity and this is accompanied by global alterations in the active site conformation in terms of topography of aromatic amino acid residues, zinc binding, and substrate binding, resulting from the weakened interaction between the active site zinc and Gln. These results suggest a pivotal role of the negatively charged carboxyl group of Glu262 which may play a critical role in enhancing the stability of the active site with strong interaction with zinc. The zinc may thus play structural role in addition to its catalytic role.  相似文献   

8.
PI- Pfu I and PI- Pfu II from Pyrococcus furiosus are homing endonucleases, as shown in the accompanying paper. These two endonucleases are produced by protein splicing from the precursor protein including ribonucleotide reductase (RNR). We show here that both enzymes specifically interact with their substrate DNA and distort the DNA strands by 73 degrees and 67 degrees, respectively. They have two copies of the amino acid sequence motif LAGLIDADG, which is present in the majority of homing endonucleases and provides some of the catalytic residues necessary for DNA cleavage activity. Site-specific mutagenesis studies showed that two acidic residues in the motifs, Asp149 and Glu250 in PI- Pfu I, and Asp156 and Asp249 in PI- Pfu II, were critical for catalysis. The third residues of the active site triads, as predicted from the structure of PI- Sce I, were Asn225 in PI- Pfu I and Lys224 in PI- Pfu II. Substitution of Asn225 in PI- Pfu I by Ala did not affect catalysis. The cleavage activity of PI- Pfu II was 50-fold decreased by the substitution of Ala for Lys224. The binding affinity of the mutant protein for the substrate DNA also decreased 6-fold. The Lys in PI- Pfu II may play a direct or indirect role in catalysis of the endonuclease activity.  相似文献   

9.
Among class B beta-lactamases, the subclass B2 CphA enzyme is characterized by a unique specificity profile. CphA efficiently hydrolyzes only carbapenems. In this work, we generated site-directed mutants that possess a strongly broadened activity spectrum when compared with the WT CphA. Strikingly, the N116H/N220G double mutant exhibits a substrate profile close to that observed for the broad spectrum subclass B1 enzymes. The double mutant is significantly activated by the binding of a second zinc ion under conditions where the WT enzyme is non-competitively inhibited by the same ion.  相似文献   

10.
We are probing the determinants of catalytic function and substrate specificity in serine proteases by kinetic and crystallographic characterization of genetically engineered site-directed mutants of rat trypsin. The role of the aspartyl residue at position 102, common to all members of the serine protease family, has been tested by substitution with asparagine. In the native enzyme, Asp102 accepts a hydrogen bond from the catalytic base His57, which facilitates the transfer of a proton from the enzyme nucleophile Ser195 to the substrate leaving group. At neutral pH, the mutant is four orders of magnitude less active than the naturally occurring enzyme, but its binding affinity for model substrates is virtually undiminished. Crystallographic analysis reveals that Asn102 donates a hydrogen bond to His57, forcing it to act as donor to Ser195. Below pH 6, His57 becomes statistically disordered. Presumably, the di-protonated population of histidyl side chains are unable to hydrogen bond to Asn102. Steric conflict may cause His57 to rotate away from the catalytic site. These results suggest that Asp102 not only provides inductive and orientation effects, but also stabilizes the productive tautomer of His57. Three experiments were carried out to alter the substrate specificity of trypsin. Glycine residues at positions 216 and 226 in the substrate-binding cavity were replaced by alanine residues in order to differentially affect lysine and arginine substrate binding. While the rate of catalysis by the mutant enzymes was reduced in the mutant enzymes, their substrate specificity was enhanced relative to trypsin. The increased specificity was caused by differential effects on the catalytic activity towards arginine and lysine substrates. The Gly----Ala substitution at 226 resulted in an altered conformation of the enzyme which is converted to an active trypsin-like conformation upon binding of a substrate analog. In a third experiment, Lys189, at the bottom of the specificity pocket, was replaced with an aspartate with the expectation that specificity of the enzyme might shift to aspartate. The mutant enzyme is not capable of cleaving at Arg and Lys or Asp, but shows an enhanced chymotrypsin-like specificity. Structural investigations of these mutants are in progress.  相似文献   

11.
Neutral endopeptidase (EC 3.424.11, NEP) is a membrane-bound zinc-metallopeptidase. The substrate specificity and catalytic activity of NEP resemble those of thermolysin, a bacterial zinc-metalloprotease. Comparison of the primary structure of both enzymes suggests that several amino acids present in the active site of thermolysin are also found in NEP. Using site-directed mutagenesis of the cDNA encoding the NEP sequence, we have already shown that His residues 583 and 587 are two of the three zinc ligands. In order to identify the third zinc ligand, we have substituted Val or Asp for Glu616 or Glu646. Val616 NEP showed the same kinetic parameters as the non-mutated NEP. In contrast, the mutant Val646 NEP was almost completely devoid of catalytic activity and unable to bind the tritiated inhibitor [3H]N-[2(R,S)-3-hydroxyaminocarbonyl-2-benzyl-1-oxypropyl]gl ycine, the binding of which is dependent on the presence of the zinc ion. Replacing Glu for Asp at position 646 conserved the negative charge, and the mutant enzyme exhibited the same Km value as the non-mutated enzyme, but kCat was decreased to less than 3% of the value of the non-mutated enzyme. When compared to the non-mutated enzyme Asp646 NEP showed a higher susceptibility to chelating agents, but bound the tritiated inhibitor with the same affinity. Taken together, these observations strongly suggest that Glu646 of NEP is the third zinc-coordinating residue and is equivalent to Glu166 in thermolysin.  相似文献   

12.
Site-directed mutagenesis was performed to investigate whether the two protease-sensitive sequences Phe(156)-Gly(163) and Arg(184)-Ser(191), of the manganese-stabilizing protein (MSP) from a thermophilic cyanobacterium, Synechococcus elongatus (Motoki, A., Shimazu, T., Hirano, M., and Katoh, S. (1998) Biochim. Biophys. Acta 1365, 492-502), are involved in functional interaction with photosystem II (PSII). The ability of MSP to bind to its functional site on the PSII complex and to reactivate oxygen evolution was dramatically reduced by the substitution of Arg(152), Asp(158), Lys(160), or Arg(162) with uncharged residues, by insertion of a single residue between Phe(156) and Leu(157), or by deletion of Leu(157). Substitution of each of the four charged residues with an identically charged residue showed that the charges at Asp(158), and possibly Lys(160), are important for the electrostatic interaction with PSII. The reactivating ability was also strongly affected by the alteration of Phe(156) to Leu. Replacement of Lys(188), the only strictly conserved charged residue in the Arg(184)-Ser(191) sequence, by Gln had only a marginal effect on the function of MSP. High affinity binding of MSP to PSII was also affected significantly by mutation at Arg(152), which is located in a region (Val(148)-Arg(152)) strictly conserved among the 14 sequences so far reported. These results imply that the Val(148)-Gly(163) sequence, which is well conserved among MSPs from cyanobacteria to higher plants, is a domain of MSP for functional interaction with PSII.  相似文献   

13.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

14.
Arylsulfatase A belongs to the sulfatase family whose members carry a Calpha-formylglycine that is post-translationally generated by oxidation of a conserved cysteine or serine residue. The formylglycine acts as an aldehyde hydrate with two geminal hydroxyls being involved in catalysis of sulfate ester cleavage. In arylsulfatase A and N-acetylgalactosamine 4-sulfatase this formylglycine was found to form the active site together with a divalent cation and a number of polar residues, tightly interconnected by a net of hydrogen bonds. Most of these putative active site residues are highly conserved among the eukaryotic and prokaryotic members of the sulfatase family. To analyze their function in binding and cleaving sulfate esters, we substituted a total of nine putative active site residues of human ASA by alanine (Asp29, Asp30, Asp281, Asn282, His125, His229, Lys123, Lys302, and Ser150). In addition the Mg2+-complexing residues (Asp29, Asp30, Asp281, and Asn282) were substituted conservatively by either asparagine or aspartate. In all mutants Vmax was decreased to 1-26% of wild type activity. The Km was more than 10-fold increased in K123A and K302A and up to 5-fold in the other mutants. In all mutants the pH optimum was increased from 4.5 by 0.2-0.8 units. These results indicate that each of the nine residues examined is critical for catalytic activity, Lys123 and Lys302 by binding the substrate and the others by direct (His125 and Asp281) or indirect participation in catalysis. The shift in the pH optimum is explained by two deprotonation steps that have been proposed for sulfate ester cleavage.  相似文献   

15.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

16.
The three-dimensional structure of bovine carbonic anhydrase III (BCA III) from red skeletal muscle cells has been determined by molecular replacement methods. The structure has been refined at 2.0 Å resolution by both constrained and restrained structure-factor least squares refinement. The current crystallographic R-value is 19.2% and 121 solvent molecules have so far been found associated with the protein. The structure is highly similar to the refined structure of human carbonic anhydrase II. Some differences in amino acid sequence and structure between the two isoenzymes are discussed. In BCA III, Lys 64 and Arg 91 (His 64 and Ile 91 in HCA II) are both pointing out from the active site cavity forming salt bridges with Glu 4 and Asp 72 (His 4 and Asp 72 in HCA II), respectively. However, Arg 67 and Phe 198 (Asn 67 and Leu 198 in HCA II) are oriented towards the zinc ion and significantly reduce the volume of the active site cavity. Phe 198 particularly reduces the size of the substrate binding region at the “deep water” position at the bottom of the cavity and we sugest that this is one of the major reasons for the differences in catalytic properties of isoenzyme III as compared to isozyme II. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.  相似文献   

18.
D-Aminoacylase is an attractive candidate for commercial production of D-amino acids through its catalysis in the hydrolysis of N-acyl-D-amino acids. We report here the first D-aminoacylase crystal structure from A. faecalis at 1.5-A resolution. The protein comprises a small beta-barrel, and a catalytic (betaalpha)(8)-barrel with a 63-residue insertion. The enzyme structure shares significant similarity to the alpha/beta-barrel amidohydrolase superfamily, in which the beta-strands in both barrels superimpose well. Unexpectedly, the enzyme binds two zinc ions with widely different affinities, although only the tightly bound zinc ion is required for activity. One zinc ion is coordinated by Cys(96), His(220), and His(250), while the other is loosely chelated by His(67), His(69), and Cys(96). This is the first example of the metal ion coordination by a cysteine residue in the superfamily. Therefore, D-aminoacylase defines a novel subset and is a mononuclear zinc metalloenzyme but containing a binuclear active site. The preferred substrate was modeled into a hydrophobic pocket, revealing the substrate specificity and enzyme catalysis. The 63-residue insertion containing substrate-interacting residues may act as a gate controlling access to the active site, revealing that the substrate binding would induce a closed conformation to sequester the catalysis from solvent.  相似文献   

19.
Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short‐interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH‐dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH‐dependent binding profile.  相似文献   

20.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号