首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraffin sections of trachea, sublingual gland, and pancreas from rats, mice, and hamsters were stained with peanut agglutinin (PNA) or Dolichos biflorus agglutinin (DBA) conjugated to horseradish peroxidase before or after enzymatic removal of sialic acid. Adjacent sections were oxidized with periodate prior to incubation with sialidase and staining with PNA and DBA. PNA binding demonstrated terminal beta-galactose in secretions, at the basolateral plasmalemma of mouse tracheal serous cells, in or at the surface of zymogen granules, and at the apical and basolateral surface of mouse and hamster pancreatic acinar cells. Sialidase digestion revealed PNA binding, demonstrative of penultimate beta-galactose, in secretions of mucous cells in tracheal and sublingual glands and at the apical glycocalyx of ciliated and secretory cells in the tracheal surface epithelium of all the rodents studied. Sialidase also imparted PNA affinity to endothelium in all three species and to secretions and the basolateral plasmalemma of tracheal serous cells and pancreatic acinar cells in the rat. Periodate oxidation blocked the enzymatic removal of N-acetylneuraminic acid as judged by prevention of staining with the sialidase-PNA procedure. Sites in which periodate prevented sialidase-PNA staining included pancreatic islet cells and at the luminal glycocalyx of ciliated and secretory cells in tracheal surface epithelium in all three rodents, most sublingual mucous cells in the hamster, pancreatic acinar cells in the rat, and endothelium, except that of the rat. Glycoconjugate in other sites remained positive with the periodate-sialidase-PNA sequence. Resistance to periodate was interpreted as evidence for the presence of terminal sialic acid with an O-acetylated polyhydroxyl side chain. DBA binding demonstrated terminal alpha-N-acetylgalactosamine in the secretion of all mucous cells in the hamster trachea and 50-90% of those in the rat, secretion and the basolateral plasmalemma of all glandular serous cells in the mouse trachea, at the apical surface of most secretory cells lining the lumen of the rat and hamster trachea, and cilia of 5-10% of ciliated cells in the rat trachea. Periodate oxidation and sialidase digestion demonstrated N-acetylneuraminic acid and penultimate alpha-N-acetylgalactosamine in cilia in the mouse trachea and sialic acid containing O-acetylated polyhydroxyl side chains subtended by N-acetylgalactosamine in the secretion of all mucous cells in the rat and hamster trachea and of 80-90% of mucous cells in the hamster sublingual gland.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
To investigate the molecular basis of the differential ability of human, equine, and guinea pig alpha 2-macroglobulins to inhibit hemagglutination and infectivity of a human influenza virus, A/Memphis/102/72 (H3N2), the structures of oligosaccharides released from the three glycoproteins by hydrazinolysis were analyzed comparatively. Approximately seven to eight sugar chains were released from each subunit of two potent inhibitors (equine and guinea pig alpha 2-macroglobulins) and a weak inhibitor (human alpha 2-macroglobulin). More than 70% of the oligosaccharides contained sialic acids in all three cases. Structural analysis of these sialo-oligosaccharides revealed that all of the three glycoproteins contain biantennary oligosaccharides with one and two sialic acids as major sugar chains (70-80% of total sugar chains). Four percent of the biantennary oligosaccharides from equine sample, 10% of those from guinea pig, and 24% of those from human contain a fucosylated trimannosyl core. No triantennary oligosaccharide was detected in equine alpha 2-macroglobulin. However, human and guinea pig alpha 2-macroglobulins contain both fucosylated and nonfucosylated triantennary oligosaccharides. All sialic acid residues occur as the Sia alpha 2----6Gal group. The one unique feature of the carbohydrate groups of equine and guinea pig alpha 2-macroglobulins was the presence of 4-O-Ac-Neu5Ac as 30-50% of the total sialic acids, while human alpha 2-macroglobulin contained only Neu 5Ac. However, 4-O-Ac-Neu5Ac is not responsible for the potent inhibition of influenza virus infection and hemagglutination as will be described in the accompanying paper.  相似文献   

3.
The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(alpha2-6) galactose(beta1-4)glucose or sialic acid(alpha2-3)galactose(beta1-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.  相似文献   

4.
Normal horse and guinea pig sera contain the glycoprotein inhibitor alpha 2-macroglobulin, which inhibits the infectivity and hemagglutinating activity of influenza A viruses of the H2 and H3 subtypes. In the current study, the presence of inhibitors of influenza A virus in pig and rabbit sera was investigated. Variants of influenza virus type A/Los Angeles/2/87(H3N2) that were resistant to horse, pig, or rabbit serum were isolated. Analysis of the variant viruses with anti-hemagglutinin (HA) monoclonal antibodies revealed that antigenic changes occurred with the development of serum inhibitor resistance. Characterization of the inhibitors in pig and rabbit sera by using periodate and receptor-destroying enzyme demonstrated that carbohydrate is an important constituent of the active portion of both inhibitor molecules and that sialic acid is involved in the interaction of the inhibitors with influenza virus HA. Nucleotide sequence analysis of the HA molecule revealed that the serum-resistant variants each acquired a different set of amino acid alterations. The multiply resistant variants maintained the original amino acid changes and acquired additional changes. Sequence modifications in the HA involved the conserved amino acids within the receptor binding site (RBS) at position 137 and the second-shell RBS residues at positions 155 and 186. Amino acid changes also occurred within antigenic site A (position 145) and directly behind the receptor binding pocket (position 220). Amino acid alterations resulted in the acquisition of a potential glycosylation site at position 128 and the loss of potential glycosylation sites at positions 246 and 248. The localization of the amino acid changes in HA1 to the region of the RBS supports the concept of serum inhibitors as receptor analogs. The unique set of mutations acquired by the serum inhibitor-resistant variants strongly suggests that horse, pig, and rabbit sera each contain distinct glycoprotein inhibitors of influenza A virus.  相似文献   

5.

Background

Influenza viruses bind and infect respiratory epithelial cells through sialic acid on cell surface. Differential preference to sialic acid types contributes to host- and tissue-tropism of avian and seasonal influenza viruses. Although the highly pathogenic avian influenza virus H5N1 can infect and cause severe diseases in humans, it is not efficient in infecting human upper respiratory tract. This is because of the scarcity of its receptor, α2,3-linked sialic acid, in human upper airway. Expression of sialic acid can be influenced by various factors including inflammatory process. Allergic rhinitis and nasal polyp are common inflammatory conditions of nasal mucosa and may affect expression of the sialic acid and susceptibility to influenza infection.

Methodology/Principal Finding

To test this hypothesis, we detected α2,3- and α2,6-linked sialic acid in human nasal polyp and normal nasal mucosal tissues by lectin staining and infected explants of those tissues with avian influenza viruses H5N1 and seasonal influenza viruses. We show here that mucosal surface of nasal polyp expressed higher level of α2,3- and α2,6-linked sialic acid than normal nasal mucosa. Accordingly, both H5N1 avian influenza viruses and seasonal influenza viruses replicated more efficiently in nasal polyp tissues explants.

Conclusions/Significance

Our data suggest a role of nasal inflammatory conditions in susceptibility to influenza infection, especially by avian influenza viruses, which is generally inefficient in infecting human upper airway. The increased receptor expression may contribute to increased susceptibility in some individuals. This may contribute to the gradual adaptation of the virus to human population.  相似文献   

6.
The unique properties of equine and guinea pig sera which make them potent inhibitors of influenza virus adsorption and infection have been investigated. The inhibitory activities of both sera are found to reside entirely in their respective alpha 2-macroglobulins, high molecular weight glycoproteins which bind to viral hemagglutinins via sialic acids of their N-linked carbohydrate groups. Structure analysis has shown that both proteins contain 4-O-acetyl-N-acetylneuraminic acid (4-O-Ac-NeuAc) (Hanaoka, K., Pritchett, T. J., Takasaki, S., Kochibe, N., Sabesan, S., Paulson, J.C., and Kobata, A. (1989) J. Biol. Chem. 264, 9842-9849). These 4-O-acetylated sialic acids have been found in few species, making their coincidence with high inhibitory potency in equine and guinea pig alpha 2-macroglobulin striking. However, 4-O-Ac-NeuAc does not appear to increase the avidity of interaction with influenza virus since isolated oligosaccharides of equine alpha 2-macroglobulin are no more potent inhibitors of adsorption than isolated oligosaccharides of human alpha 2-macroglobulin, which is a relatively poor inhibitor and contains only NeuAc. Since 4-O-Ac-NeuAc is resistant to cleavage by viral sialidase it may serve to protect the inhibitor from inactivation. These and supporting results suggest that the key property of equine and guinea pig alpha 2-macroglobulin which make them high potency inhibitors is a spatial arrangement of sialic acid containing oligosaccharide groups which allows optimal interaction with multiple hemagglutinins. The implications of these results for the design of low molecular weight inhibitors of influenza virus infection are discussed.  相似文献   

7.
The amino acid substitution of aspartic acid to glycine in hemagglutinin (HA) in position 222 (HA-D222G) as well as HA-222D/G polymorphism of pandemic (H1N1) 2009 influenza viruses (A(H1N1)pdm09) were frequently reported in severe influenza in humans and mice. Their impact on viral pathogenicity and the course of influenza has been discussed controversially and the underlying mechanism remained unclarified. In the present study, BALB/c mice, infected with the once mouse lung- and cell-passaged A(H1N1)pdm09 isolate A/Jena/5258/09 (mpJena/5258), developed severe pneumonia. From day 2 to 3 or 4 post infection (p.i.) symptoms (body weight loss and clinical score) continuously worsened. After a short disease stagnation or even recovery phase in most mice, severity of disease further increased on days 6 and 7 p.i. Thereafter, surviving mice recovered. A 45 times higher virus titer maximum in the lung than in the trachea on day 2 p.i. and significantly higher tracheal virus titers compared to lung on day 6 p.i. indicated changes in the organ tropism during infection. Sequence analysis revealed an HA-222D/G polymorphism. HA-D222 and HA-G222 variants co-circulated in lung and trachea. Whereas, HA-D222 variant predominated in the lung, HA-G222 became the major variant in the trachea after day 4 p.i. This was accompanied by lower neutralizing antibody titers and broader receptor recognition including terminal sialic acid α-2,3-linked galactose, which is abundant on mouse trachea epithelial cells. Plaque-purified HA-G222-mpJena/5258 virus induced severe influenza with maximum symptom on day 6 p.i. These results demonstrated for the first time that HA-222D/G quasispecies of A(H1N1)pdm09 caused severe biphasic influenza because of fast viral intra-host evolution, which enabled partial antibody escape and minor changes in receptor binding.  相似文献   

8.
The distribution of sialic acid (SA) species varies among animal species, but the biological role of this variation is largely unknown. Influenza viruses differ in their ability to recognize SA-galactose (Gal) linkages, depending on the animal hosts from which they are isolated. For example, human viruses preferentially recognize SA linked to Gal by the alpha2,6(SAalpha2,6Gal) linkage, while equine viruses favor SAalpha2,3Gal. However, whether a difference in relative abundance of specific SA species (N-acetylneuraminic acid [NeuAc] and N-glycolylneuraminic acid [NeuGc]) among different animals affects the replicative potential of influenza viruses is uncertain. We therefore examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity. A virus with an HA recognizing NeuAcalpha2,6Gal but not NeuAcalpha2,3Gal or NeuGcalpha2,3Gal failed to replicate in horses, while one with an HA recognizing the NeuGcalpha2,3Gal moiety replicated in horses. Furthermore, biochemical and immunohistochemical analyses and a lectin-binding assay demonstrated the abundance of the NeuGcalpha2,3Gal moiety in epithelial cells of horse trachea, indicating that recognition of this moiety is critical for viral replication in horses. Thus, these results provide evidence of a biological effect of different SA species in different animals.  相似文献   

9.
We constructed a human recombinant parainfluenza virus type 3 (rPIV3) that expresses enhanced green fluorescent protein (GFP) and used this virus, rgPIV3, to characterize PIV3 infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). The apical surface of HAE was highly susceptible to rgPIV3 infection, whereas only occasional cells were infected when virus was applied to the basolateral surface. Infection involved exclusively ciliated epithelial cells. There was little evidence of virus-mediated cytopathology and no spread of the virus beyond the ciliated cell types. Infection of ciliated cells by rgPIV3 was sensitive to a neuraminidase specific for alpha2-6-linked sialic acid residues, but not to a neuraminidase that cleaves alpha2-3- and alpha2-8-linked sialic acid residues. This provided evidence that rgPIV3 utilizes alpha2-6-linked sialic acid residues for initiating infection, a specificity also described for human influenza viruses. The PIV3 fusion (F) glycoprotein was trafficked exclusively to the apical surface of ciliated cells, which also was the site of release of progeny virus. F glycoprotein localized predominately to the membranes of the cilial shafts, suggesting that progeny viruses may bud from cilia per se. The polarized trafficking of F glycoprotein to the apical surface also likely restricts its interaction with neighboring cells and could account for the observed lack of cell-cell fusion. HAE derived from cystic fibrosis patients was not more susceptible to rgPIV3 infection but did exhibit limited spread of virus due to impaired movement of lumenal secretions due to compromised function of the cilia.  相似文献   

10.
Sialoderivatives expressed in the rabbit oviduct under hormonal treatment have been investigated in situ by lectin histochemistry with a view to specifying further regional and temporal specializations which enable ampulla and isthmus to play distinct roles in the reproductive events. Application of MAL II and SNA lectins allowed sialoglycoconjugates containing Sia(alpha2,3)Gal and Sia(alpha2,6)Gal groups to be discriminated. Sialic acid residues linked to Gal(beta1,3)-D-GalNAc sequences were identified using PNA combined with sialidase digestion. Information on structural features of sialic acids were acquired by deacetylation and differential oxidation pretreatments. In both oviductal portions, Sia(alpha2,6) groups were restricted to the luminal surface of the lining epithelium while Sia(alpha2,3) groups were specifically located in the secretory, non-ciliated cells. In the ampullary epithelium, non-acetylated sialic acids alpha2,3-linked to Gal(beta1,3)-D-GalNAc sequences were largely present. Only at ovulation time were sialic acid residues containing acetyl substituents on C4 also found. A great variety of sialic acids were found in the isthmic epithelium which showed the highest expression of acetylated forms at the first hours after the hormonal treatment. The heterogeneity of sialoderivatives differently expressed in the ampulla and isthmus as well as their distinct cycle-dependent modulation suggest that sialylated components may contribute to the molecular and functional specificities within the oviductal epithelium.  相似文献   

11.
Influenza A viruses possess two virion surface proteins, hemagglutinin (HA) and neuraminidase (NA). The HA binds to sialyloligosaccharide viral receptors, while the NA removes sialic acids from the host cell and viral sialyloligosaccarides. Alterations of the HA occur during adaptation of influenza viruses to new host species, as in the 1957 and 1968 influenza pandemics. To gain a better understanding of the contributions of the HA and possibly the NA to this process, we generated cell lines expressing reduced levels of the influenza virus receptor determinant, sialic acid, by selecting Madin-Darby canine kidney cells resistant to a lectin specific for sialic acid linked to galactose by alpha(2-3) or alpha(2-6) linkages. One of these cell lines had less than 1/10 as much N-acetylneuraminic acid as its parent cell line. When serially passaged in this cell line, human H3N2 viruses lost sialidase activity due to a large internal deletion in the NA gene, without alteration of the HA gene. These findings indicate that NA mutations can contribute to the adaptation of influenza A virus to new host environments and hence may play a role in the transmission of virus across species.  相似文献   

12.
A Tavakkol  A T Burness 《Biochemistry》1990,29(47):10684-10690
Sialic acid residues are required in cellular receptors for many different mammalian viruses. Sialic acid could have a direct role, being an integral part of the virus binding site on the receptor. Alternatively, negatively charged sialic acid could have an indirect role, being responsible for holding the receptor in the required configuration for virus recognition, for instance, by interacting with positively charged amino acid residues found in the polypeptide chain of receptors. We have investigated the role of sialic acid in virus attachment by studying the interaction of the small RNA virus encephalomyocarditis (EMC) with glycophorin A, its receptor on human erythrocytes. In several experiments, influenza virus A was used for control purposes. Blocking positive charges on glycophorin either in lysine residues by acetylation or in arginine residues with butanedione did not affect its interaction with EMC virus. In contrast, blocking negatively charged carboxyl groups in sialic acid residues by amidation destroyed the ability of glycophorin to inhibit EMC virus attachment suggesting an important role for this part of sialic acid in EMC virus attachment. Removal of the polyhydroxy side chain in sialic acid residues of glycophorin by mild oxidation with periodate followed by reduction with borohydride had little effect on its interaction with EMC virus. Further, sialic acid species with either an acetyl or glycolyl group attached to the amino group on position 5 interacted equally well with EMC virus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
J E Coligan  C W Todd 《Biochemistry》1975,14(4):805-810
Periodate oxidation has been applied to examine the carbohydrate structure of carcinoembryonic antigen (CEA) and the possible role of the carbohydrate residues in its antigenic activity. Sialic acid (N-acetylneuraminic acid) and fucose were completely destroyed, and galactose and mannose were partially destroyed by a single periodate treatment. Serial periodate treatment (Smith degradation) destroyed additional amounts of galactose and mannose as well as significant amounts of N-acetylglucosamine. Prior removal of sialic acid by neuraminidase treatment led to increased destruction of galactose by periodate. Antigenic activity persisted indicating that the residues destroyed played little, if any, part in the antigenicity of CEA. These results yield an initial view of the structural arrangement of the carbohydrate residues in the CEA molecule.  相似文献   

14.
The unique glycoprotein of influenza C virus, designated hemagglutinin (HEF), exhibits three functions: hemagglutination, esterase activity, and fusion factor. As the virus uses 9-O-acetylated sialic acid as a high-affinity receptor determinant for attachment to cells, its binding activity was used to reveal O-acetylated sialic acid residues after polyacrylamide gel electrophoresis and transfer onto nitrocellulose sheets of proteins and thin-layer chromatography of lipids. The specificity of the binding for O-acetylated sialoglycoconjugates was investigated. Our results showed that influenza C virus could detect the different forms of the two murine glycophorins which are known to be O-acetylated sialoglycoconjugates. The virus also bound to O-acetylated gangliosides isolated from embryonic chicken brain such as purified O-acetylated NeuAc alpha (2-8)NeuAc alpha (2-8)NeuAc alpha (2-3)Gal beta (1-4)Glc beta (1-1)ceramide (GT3). The esterase activity of the HEF protein of influenza C virus was used to unmask the sialic acid. After its deacetylation by the virus enzyme, the O-acetylated GT3 was recognized by a monoclonal antibody which binds only to the nonacetylated derivative. The results presented here show that influenza C virus is a discriminating analytical probe for identifying O-acetylated sialoglycoconjugates directly after Western blotting of proteins and thin-layer chromatography of lipids, thus providing a new analytical tool.  相似文献   

15.
The content and accessibility of terminal sialic acid and galactose residues of rat hepatocytes in primary culture were determined by in situ labeling using either periodate or sialidase/galactose oxidase treatment followed by sodium borotritiide reduction. Rat erythrocytes which were used for comparison showed a strongly enhanced tritium incorporation into galactose after sialidase treatment. In contrast, with freshly prepared rat hepatocytes only a small amount of galactose labeling was achieved after sialidase treatment. The amount of galactose labeled following sialidase treatment increased with time in culture up to day 6 and roughly paralleled the increase of the total sialic acid content. Major changes of sialic acid-containing glycoconjugates were restricted to the gangliosides. There was a transient drop in surface labeling of ganglioside-associated sialic acid on the first day in culture. The specific radioactivity of the in situ-tritiated ganglioside-sialic acid also fell by 50% in this period. Between day 2 and 4, there was an increase in gangliosidesialic acid labeling but the specific radioactivity of the sialic acid remained constant. This indicates that newly synthesized gangliosides but not the preexisting ones were accessible to periodate oxidation. The data allow conclusions about turnover and topology of the sialic acid-containing glycolipids.  相似文献   

16.
The growing interest in glycoconjugates expressed and released by the epithelium of the intestinal mucosa is tightly related to the multiple functional roles attributed to sialic acid and its derivatives. In the present work, biotin and HRP conjugated lectins were used to detect the sialylation pattern and to identify specific structural features of sialoderivatives in the rat colon. In particular, the occurrence and distribution of sialic acids linked alpha2,6 to D-Gal/D-GalNAc and alpha2,3 to D-Gal were directly demonstrated with SNA and MAL II binding, respectively. In addition, in order to by-pass the specificity problems of SNA and MAL II as histochemical reagents, as well as to look for additional and complementary information about acetylation degree and sites, we combined sialidase digestion, potassium hydroxide deacetylation, and differential periodate oxidation with PNA and DBA binding. The data showed the distribution and structure of sialic acid-beta-D-Gal(1-3)-D-GalNAc and sialic acid-D-GalNac sequences, which proved to be widely distributed as cellular components or secretory products in surface goblet cells and crypt cells of the colonic epithelium. A high degree of O-acetylation, with acetyl groups mainly at 9 and 4 positions, was found, showing an increasing gradient from the proximal to distal portion of the colon. These results, which largely reproduce the sialylation pattern in other species, contribute new insights in defining the tissue specific expression of sialoderivatives in the colonic mucosa, and testify to their high heterogeneity which the wide range of sialic acid functional correlates in the intestinal tract depend on.  相似文献   

17.
This study was aimed at characterizing the glycoconjugates produced by the horse sublingual gland and, in particular, at discriminating between the sialoderivatives by means of differential oxidation and saponification combined with lectin histochemistry and enzymatic degradation. The results showed a predominance of sialoglycoconjugates with beta-galactose as acceptor sugar in the salivary mucins produced by the sublingual gland. Besides being the most represented terminal residue, sialic acid was also expressed in a great variety of derivatives distinguishable on the basis of acceptor sugars to the penultimate beta-galactose as well as linkage and acetylation degree of the pyranose ring and the polyhydroxyl side chain. A role in the protection of mucous membranes from physical, chemical and pathogenic agents can be hypothesized for the horse sublingual mucins.  相似文献   

18.
The host adaptation of influenza virus is partly dependent on the sialic acid (SA) isoform bound by the viral hemagglutinin (HA). Avian influenza viruses preferentially bind the α-2,3 SA and human influenza viruses the α-2,6 isoform. Each isoform is predominantly associated with different surface epithelial cell types of the human upper airway. Using recombinant HAs and human tracheal airway epithelial cells in vitro and ex vivo, we show that many avian HA subtypes do not adhere to this canonical view of SA specificity. The propensity of avian viruses to adapt to human receptors may thus be more widespread than previously supposed.  相似文献   

19.
Ligand recognition by influenza virus. The binding of bivalent sialosides.   总被引:4,自引:0,他引:4  
Infection by influenza virus is initiated by a cellular adhesion event that is mediated by the viral protein, hemagglutinin, which is exposed on the surface of the virion. Hemagglutinin recognizes and binds to cell surface sialic acid residues. Although each individual ligand binding interaction is weak, the high affinity of influenza virus for cells that bear sialic acid residues is thought to result from a multivalent attachment process involving many similar recognition events. To evaluate such binding we have synthesized three series of compounds, each containing two sialic acid residues separated by spacers of different length, and have tested them as ligands for influenza hemagglutinin. No increased binding to the bromelain-released hemagglutinin ectodomain was seen for any of the bivalent compounds as determined by 1H NMR titration. In contrast, however, a spacer length between sialic acid residues of approximately 55 A sharply increases the binding of these bidentate species to whole virus as determined by hemagglutination inhibition assays. The most effective compound containing glycines in the linking chain displayed 100-fold increased affinity for whole virus over the paradigm monovalent ligand, Neu5Ac alpha 2Me.  相似文献   

20.
人呼吸道禽流感病毒受体的分布趋势   总被引:6,自引:1,他引:6  
禽类流感病毒和人类流感病毒具有很强的受体识别特异性,分别与唾液酸α-2,3Gal和α-2,6Gal受体分子结合而感染各自的宿主细胞.这种受体结合特异性是流感病毒在禽类和人类之间跨种属传递的主要障碍.应用凝集素组织化学染色技术,探讨人呼吸道各解剖学部位流感病毒唾液酸受体的分布特征.结果显示,唾液酸α-2,3Gal受体, 即禽类流感受体,主要分布在下呼吸道的呼吸部即呼吸细支气管和肺泡, 而在主气管、支气管和细支气管仅少量分布.相反,人类流感病毒受体,唾液酸α-2,6Gal受体在气管、支气管呈高密度分布,随着支气管分级逐渐降低分布减少,至肺泡分布最少.但比较人呼吸道发育成熟过程中,唾液酸α-2,3Gal和α-2,6Gal受体的表达,未发现明显差别.禽流感H5N1病毒体外感染人呼吸道组织试验结果表明,肺泡上皮较支气管和气管上皮易感染,与唾液酸α-2,3Gal受体分布特点相符合.结果提示,人呼吸道可被禽流感病毒感染,目前H5N1病毒极少发生人传人的特点,可能与个体间上呼吸道唾液酸α-2,3Gal受体表达差异有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号