首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The covalent modification of water-insoluble membrane polypeptides incorporated into lipid bilayers by native chemical ligation is described. The key feature of this strategy is the use of cubic lipidic phase (CLP) matrixes as reaction media. The CLP-matrix consists of a lipid bilayer into which hydrophobic polypeptides and folded membrane proteins can be inserted and two unbounded aqueous channels that give the aqueous phase access to both sides of an infinite lipid bilayer and thus ensure that modification of solvent-exposed sites is independent of the topology of membrane incorporation. The enzymatic removal of an N-terminal proteolytic cleavage sequence from the membrane polypeptide exposes an N-terminal cysteine residue. Subsequently, a C-terminal thioester peptide is joined to the N-terminus of the polypeptide by a native chemical ligation reaction. By use of this approach, incorporation of a variety of molecular tools, such as spectroscopic probes, unnatural amino acids, and molecular markers into membrane proteins that cannot be easily solubilized in detergent or denaturant solutions, may be achieved.  相似文献   

2.
The process of native chemical ligation (NCL) is well described in the literature. An N-terminal cysteine-containing peptide reacts with a C-terminal thioester-containing peptide to yield a native amide bond after transesterification and acyl transfer. An N-terminal cysteine is required as both the N-terminal amino function and the sidechain thiol participate in the ligation reaction. In certain circumstances it is desirable, or even imperative, that the N-terminal region of a peptidic reaction partner remain unmodified, for Instance for the retention of biological activity after ligation. This work discusses the synthesis of a pseudo-N-terminal cysteine building block for incorporation into peptides using standard methods of solid phase synthesis. Upon deprotection, this building block affords a de facto N-terminal cysteine positioned on an amino acid sidechain. which is capable of undergoing native chemical ligation with a thioester. The syntheses of several peptides and structures containing this motif are detailed, their reactions discussed. and further applications of this technology proposed.  相似文献   

3.
In several organisms osmotic stress tolerance is mediated by the accumulation of the osmoprotective compound glycine betaine. With the ambition to transfer the betaine biosynthetic pathway into plants not capable of synthesizing this osmoprotectant, the Escherichia coli gene betB encoding the second enzyme in the pathway, betaine-aldehyde dehydrogenase was introduced into Nicotiana tabacum. The betB structural gene was fused to the promoter of ats1a, a gene coding for the small subunit of Rubisco in Arabidopsis thaliana. Two types of constructs were made, either encoding the N-terminal transit peptide for chloroplast targeting or without the targeting signal for cytoplasmic localization of the BetB polypeptide. Analysis of transgenic N. tabacum plants harboring these constructs showed that in both cases the transgenes were expressed. Northern analysis of the plants demonstrated the accumulation of betB-related mRNA of the correct size. The production and processing of the corresponding polypeptides could be demonstrated by immunoblotting using polyclonal antisera raised against the BetB polypeptide. The transit peptide encoded by ats1a was able to direct BetB to the chloroplast, as suggested by the presence of the correctly processed BetB polypeptide in the chloroplast fraction. High betaine-aldehyde dehydrogenase activity was detected in transgenic plants, both in those where the chimeric gene product was targeted to the chloroplast and those where it remained in the cytoplasm. The transgenic tobacco acquired resistance to the toxic intermediate, betaine aldehyde, in the betaine biosynthetic pathway indicating that the bacterial enzyme is biologically active in its new host. Furthermore, these transgenic plants were able to convert exogenously supplied betaine aldehyde efficiently to glycine betaine.  相似文献   

4.
In vitro synthesis of type IV procollagen   总被引:3,自引:0,他引:3  
Total RNA was isolated from parietal endoderm cells of 131/2-day mouse embryos that synthesize large amounts of type IV procollagen. In vitro translation of this RNA in the reticulocyte lysate supplemented with a ribonuclease inhibitor yielded two equally prominent polypeptides of Mr = 165,000 and 168,000, immunoprecipitable with anti-mouse type IV collagen serum. The Mr = 165,000 polypeptide was shown by one-dimensional peptide mapping to represent an unmodified chain of type IV procollagen. The Mr = 168,000 polypeptide, the in vitro synthesis of which was barely detectable in the absence of a ribonuclease inhibitor, most likely represents the other genetically distinct chain of type IV procollagen. Similar results to those described were also obtained using poly(A) + RNA prepared from murine F9 embryonal carcinoma cells induced to differentiate in vitro into parietal endoderm.  相似文献   

5.
Faridmoayer A  Scaman CH 《Glycobiology》2005,15(12):1341-1348
Alpha-glucosidase I initiates the trimming of newly assembled N-linked glycoproteins in the lumen of the endoplasmic reticulum (ER). Site-specific chemical modification of the soluble alpha-glucosidase I from yeast using diethylpyrocarbonate (DEPC) and tetranitromethane (TNM) revealed that histidine and tyrosine are involved in the catalytic activity of the enzyme, as these residues could be protected from modification using the inhibitor deoxynojirimycin. Deoxynojirimycin could not prevent inactivation of enzyme treated with N-bromosuccinimide (NBS) used to modify tryptophan residues. Therefore, the binding mechanism of yeast enzyme contains different amino acid residues compared to its mammalian counterpart. Catalytically active polypeptides were isolated from endogenous proteolysis and controlled trypsin hydrolysis of the enzyme. A 37-kDa nonglycosylated polypeptide was isolated as the smallest active fragment from both digests, using affinity chromatography with inhibitor-based resins (N-methyl-N-59-carboxypentyl- and N-59-carboxypentyl-deoxynojirimycin). N-terminal sequencing confirmed that the catalytic domain of the enzyme is located at the C-terminus. The hydrolysis sites were between Arg(521) and Thr(522) for endogenous proteolysis and residues Lys(524) and Phe(525) for the trypsin-generated peptide. This 37-kDa polypeptide is 1.9 times more active than the 98-kDa protein when assayed with the synthetic trisaccharide, alpha-D-Glc1,2alpha-D-Glc1,3alpha-D-Glc-O(CH2)(8)COOCH(3), and is not glycosylated. Identification of this relatively small fragment with catalytic activity will allow mechanistic studies to focus on this critical region and raises interesting questions about the relationship between the catalytic region and the remaining polypeptide.  相似文献   

6.
Yang S  Nikodem D  Davidson EA  Gowda DC 《Glycobiology》1999,9(12):1347-1356
The cDNAs that encode the 70 kDa C-terminal portion of Plasmodium falciparum merozoite surface protein 1 (MSP-1), with or without an N-terminal signal peptide sequence and C-terminal glycosylphosphatidylinositol (GPI) signal sequence of MSP-1, were expressed in mammalian cell lines via recombinant vaccinia virus. The polypeptides were studied with respect to the nature of glycosylation, localization, and proteolytic processing. The polypeptides derived from the cDNAs that contained the N-terminal signal peptide were modified with N -linked high mannose type structures and low levels of O -linked oligosaccharides, whereas the polypeptides from the cDNAs that lacked the signal peptide were not glycosylated. The GPI anchor moiety is either absent or present at a very low level in the polypeptide expressed from the cDNA that contained both the signal peptide and GPI signal sequences. Together, these data establish that whereas the signal peptide of MSP-1 is functional, the GPI anchor signal is either nonfunctional or poorly functional in mammalian cells. The polypeptides expressed from the cDNAs that contained the signal peptide were proteolytically cleaved at their C-termini, whereas the polypeptides expressed from the cDNAs that lacked the signal peptide were uncleaved. While the polypeptide expressed from the cDNA containing both the signal peptide and GPI anchor signal was truncated by approximately 14 kDa at the C-terminus, the polypeptide derived from the cDNA with only the signal peptide was processed to remove approximately 6 kDa, also from the C-terminus. Furthermore, the polypeptides derived from cDNAs that lacked the signal peptide were exclusively localized intra-cellularly, the polypeptides from cDNAs that contained the signal peptide were predominantly intracellular, with low levels on the cell surface; none of the polypeptides was secreted into the culture medium to a detectable level.These results suggest that N -glycosylation alone is not sufficient for the efficient extracellular transport of the recombinant MSP-1 polypeptides through the secretory pathway in mammalian cells.  相似文献   

7.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is the most complicated enzyme in the respiratory chain and is composed of at least 26 distinct polypeptides. Two hydrophilic subfractions of bovine heart complex I were systematically resolved into individual polypeptides by chromatography. Three polypeptides (51, 24, and 9 kDa) were isolated from the flavoprotein fraction (FP) of complex I, and the complete amino acid sequence of the 9 kDa polypeptide was determined. The 9 kDa polypeptide is composed of 75 amino acids with a molecular weight of 8,437. This protein exhibits no obvious sequence similarity to other proteins. The iron-sulfur protein fraction (IP) of complex I was separated into eight polypeptides, 75, 49, 30, 20, 18, 15, 13 kDa-A, and 13 kDa-B. The 20 kDa polypeptide was recognized as a novel component of IP for the first time. The N-terminal and several peptide sequences of the 20 kDa polypeptide were determined. Comparison of the sequences revealed significant sequence similarities of the 20 kDa polypeptide to the psbG gene products encoded in the chloroplast genome. The conserved sequence in these proteins was also found in the small subunit of the nickel-containing hydrogenases. These results suggest that complex I is related to other redox enzyme complexes.  相似文献   

8.
The antigen I/II (AgI/II) family polypeptides, ranging from 1310 to 1653 amino acid (aa) residues, are cell wall anchored adhesins expressed by most indigenous species of oral streptococci. The polypeptides interact with a wide range of host molecules, in particular salivary agglutinin glycoprotein (SAG or gp340), and with ligands on other oral bacteria. To determine the receptor recognition properties of six different AgI/II family polypeptides from strains of Streptococcus gordonii, Streptococcus intermedius and Streptococcus mutans, the genes were cloned and expressed on the surface of the surrogate host Lactococcus lactis. The S. gordonii SspA and SspB polypeptides mediated higher binding levels of L. lactis cells to surface immobilized gp340 than did S. intermedius Pas protein, or S. mutans SpaP or PAc proteins. However, the AgI/II proteins were all similar in their abilities to mediate aggregation of lactococci by fluid phase gp340. The SpaP(I) polypeptide from S. mutans Ingbritt, which was C-terminally truncated by approximately 400 aa residues, did not bind gp340. Lactococci expressing AgI/II proteins, including SpaP(I), were aggregated by a synthetic 16 aa residue peptide SRCRP2 derived from the aa repeat block sequences within gp340. In coaggregation assays, SspB from S. gordonii was unique in mediating coaggregation with only group A and group E strains of Actinomyces naeslundii. All the other AgI/II polypeptides mediated coaggregation with group C and group D strains of A. naeslundii. Analysis of chimeric protein constructs revealed that coaggregation specificity was determined by sequences within the N-terminal half of AgI/II protein. A synthetic peptide (20 aa residues), which defines a putative adhesion epitope within the C-terminal region of polypeptide, inhibited AgI/II-mediated aggregation by gp340 but did not affect coaggregation with A. naeslundii. These results suggest that different mechanisms operate in interactions of AgI/II family polypeptides with native gp340, gp340 SRCR domain peptide, and A. naeslundii. Specificity of these interactions appears to be determined by discontinuous but interacting regions of the polypeptides, thus providing flexibility in receptor recognition for streptococcal colonization of the human host.  相似文献   

9.
We have evaluated "NMEGylation"--the covalent attachment of an oligo-N-methoxyethylglycine (NMEG) chain--as a new form of peptide/protein modification to enhance the bioavailability of short peptides. OligoNMEGs are hydrophilic polyethylene glycol-like molecules made by solid-phase synthesis, typically up to 40 monomers in length. They have been studied as nonfouling surface coatings and as monodisperse mobility modifiers for free-solution conjugate capillary electrophoresis. However, polyNMEGs have not been demonstrated before this work as modifiers of therapeutic proteins. In prior published work, we identified a short peptide, "C20," as a potential extracellular inhibitor of the fusion of human respiratory syncytial virus with mammalian cells. The present study was aimed at improving the C20 peptide's stability and solubility. To this end, we synthesized and studied a series of NMEGylated C20 peptide-peptoid bioconjugates comprising different numbers of NMEGs at either the N- or C-terminus of C20. NMEGylation was found to greatly improve this peptide's solubility and serum stability; however, longer polyNMEGs (n > 3) deleteriously affected peptide binding to the target protein. By incorporating just one NMEG monomer, along with a glycine monomer as a flexible spacer, at C20's N-terminus (NMEG-Gly-C20), we increased both solubility and serum stability greatly, while recovering a binding affinity comparable to that of unmodified C20 peptide. Our results suggest that NMEGylation with an optimized number of NMEG monomers and a proper linker could be useful, more broadly, as a novel modification to enhance bioavailability and efficacy of therapeutic peptides.  相似文献   

10.
Introduction of aldehyde groups into protein conjugates enhanced the immune response to a coupled peptide without the use of strong adjuvants. Synthetic peptides representing the N-terminal (residues 1-16) and internal (residues 53-65) epitopes of toxic shock syndrome toxin-1 (TSST-1) were coupled to carrier protein, and carbonyl tags were introduced by Amadori reaction with glycolaldehyde. Modified and unmodified antigens in alum were used to immunize rabbits and the reactivities of antisera were compared. Aldehyde modification augmented the response detected by ELISA, which included enhanced binding to peptides and to native TSST-1. In western blot, TSST-1 was detected by antiserum elicited to the N-terminal peptide, but not that generated to the peptide representing the internal sequence. The same antiserum also neutralized TSST-1 activity in a lymphocyte proliferation assay. The circular dichroism spectrum of the N-terminal peptide indicated a propensity for helical conformation, similar to the structure at the corresponding sequence of the native protein. These data suggest that aldehyde modification can boost immunogenicity of peptide-based vaccines, generating epitope-specific immune responses against the cognate protein antigens without using potent adjuvants.  相似文献   

11.
Conditions that permitted cell-free synthesis of at least one of the non-structural, in addition to two-structural, polypeptides of tick-borne encephalitis virus have been found. The time course of accumulation of virus-specific polypeptides in extracts of Krebs-2 cells and reticulocyte lysates as well as the peptide maps of the products synthesised were studied. A model of generation of viral structural polypeptides has been proposed, according to which a common precursor of these proteins while in a nascent form, is processed in a membrane-dependent reaction into a C-terminal segment, corresponding to the polypeptide moiety of envelope glycoprotein E, and an N-terminal segment, doublet p36/33. Subsequently, an N-terminal segment, corresponding to the core polypeptide C, is cleaved off from p36/33. The remaining C-terminal segment of p36/33 is possibly a precursor of the membrane polypeptide M. The translational strategy of flaviviruses is compared to that of other positive-stranded RNA viruses.  相似文献   

12.
K G Buki  E Kun 《Biochemistry》1988,27(16):5990-5995
Proteolysis by plasmin inactivates bovine ADP-ribosyltransferase; therefore, enzymatic activity depends exclusively on the intact enzyme molecule. The transferase was hydrolyzed by plasmin to four major polypeptides, which were characterized by affinity chromatography and N-terminal sequencing. Based on the cDNA sequence for human ADP-ribosyltransferase enzyme [Uchida, K., Morita, T., Sato, T., Ogura, T., Yamashita, R., Noguchi, S., Suzuki, H., Nyunoya, H., Miwa, M., & Sugimura, T. (1987) Biochem. Biophys. Res. Commun. 148, 617-622], a polypeptide map of the bovine enzyme was constructed by superposing the experimentally determined N-terminal sequences of the isolated polypeptides on the human sequence deduced from its cDNA. Two polypeptides, the N-terminal peptide (Mr 29,000) and the polypeptide adjacent to it (Mr 36,000), exhibited binding affinities toward DNA, whereas the C-terminal peptide (Mr 56,000), which accounts for the rest of the transferase protein, bound to the benzamide-Sepharose affinity matrix, indicating that it contains the NAD+-binding site. The fourth polypeptide (Mr 42,000) represents the C-terminal end of the larger C-terminal fragment (Mr 56,000) and was formed by a single enzymatic cut by plasmin of the polypeptide of Mr 56,000. The polypeptide of Mr 42,000 still retained the NAD+-binding site. The plasmin-catalyzed cleavage of the polypeptide of Mr 56,000-42,000 was greatly accelerated by the specific ligand NAD+. Out of a total of 96 amino acid residues sequenced here, there were only 6 conservative replacements between human and bovine ADP-ribosyltransferase.  相似文献   

13.
Modification of proteins with polymers is a viable method to tune protein properties, e.g., to render them more water-soluble by using hydrophilic polymers. We have utilized precision-length, polyethylene glycol-based oligomers carrying a thioester moiety in transthioesterification and native chemical ligation reactions with internal and N-terminal cysteine residues in proteins and peptides. These reactions lead to uniquely modified proteins with an increased solubility in chaotrope- and detergent-free aqueous systems. Polymer modification of internal cysteines is fully reversible and allows generation of stable protein-polymer conjugates for enzymatic manipulations as demonstrated by proteolytic cleavage of a protein construct that was only soluble in buffers incompatible with protease activity before polymer modification. The permanent polymer modification of a Rab protein at its N-terminal cysteine produced a fully active Rab variant that was efficiently prenylated. Thus, PEGylation of prenylated proteins might be a viable route to increase water solubility of such proteins in order to carry out experiments in detergent- and lipid-free systems.  相似文献   

14.
Under conditions of acidic pH and elevated temperature, insulin partially unfolds and aggregates into highly structured amyloid fibrils. Aggregation of insulin leads to loss of activity and can trigger an unwanted immune response. Compounds that prevent protein aggregation have been used to stabilize insulin; these compounds generally suppress aggregation only at relatively high inhibitor concentrations. For example, effective inhibition of aggregation of 0.5 mM insulin required arginine concentrations of > or =100 mM. Here, we investigate a targeted approach toward inhibiting insulin aggregation. VEALYL, corresponding to residues B12-17 of full-length insulin, was identified as a short peptide that interacts with full-length insulin. A hybrid peptide was synthesized that contained this binding domain and hexameric arginine; this peptide significantly reduced the rate of insulin aggregation at near-equimolar concentrations. An effective binding domain and N-terminal placement of the arginine hexamer were necessary for inhibitory activity. The data were analyzed using a simple two-step model of aggregation kinetics. These results are useful not only in identifying an insulin aggregation inhibitor but also in extending a targeted protein strategy for modifying aggregation of amyloidogenic proteins.  相似文献   

15.
The catalytic polypeptide of DNA polymerase alpha is often observed in vitro as a family of phosphopolypeptides predominantly of 180 and 165 kDa derived from a single primary structure. The estimated Mr of this polypeptide deduced from the full-length cDNA is 165 kDa. Immunoblot analysis with polyclonal antibodies against peptides of the N- and C-termini of the deduced primary sequence indicates that the observed family of polypeptides from 180 kDa to lower molecular weight results from proteolytic cleavage from the N-terminus. Antibodies against the N-terminal peptide detect only the 180 kDa species suggesting that this higher molecular weight polypeptide may be the result of posttranslational modification of the 165 kDa primary translation product. The catalytic polypeptide is not only phosphorylated but is also found to react with lectins ConA and RCA. N-terminal sequencing of the isolated catalytic polypeptide from human cells and of the recombinant fusion proteins indicates that the often observed 165 kDa polypeptide is the in vitro proteolytic cleavage product of the modified 180 kDa protein at the specific site between lys123 and lys124 within the sequence -RNVKKLAVTKPNN-.  相似文献   

16.
The structures of [3H]pargyline-labeled, flavin-containing polypeptides of monoamine oxidase (MAO) from hybrid NCB20 cells, and their parental cells, A/J mouse brain cells and Chinese hamster brain cells, were analyzed and compared by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and limited proteolysis and one-dimensional peptide mapping in SDS gels. After preincubation of mitochondrial preparations with deprenyl or clorgyline, the flavin-containing polypeptide of type A or type B MAO was selectively labeled with [3H]pargyline. SDS-PAGE of [3H]pargyline-labeled mitochondrial samples revealed that the polypeptide with apparent Mr of 62,000 was associated with type A activity in the three types of cells, and that the polypeptide with apparent Mr of 61,000 or 58,000 was associated with type B activity in Chinese hamster brain cells and NCB20 cells or A/J mouse brain cells, respectively. Chymotrypsin digestion of the [3H]pargyline-labeled polypeptides and the peptide mapping in SDS gels from A/J mouse and Chinese hamster brain cells produced identical map patterns between the two type A MAOs, almost the same map patterns (with the exception of one additional peptide fragment) between the two type B MAOs, and different map patterns between type A and type B MAOs. The results of identical treatments of the [3H]pargyline-labeled polypeptides of MAOs in NCB20 cells showed that type A and type B MAO in NCB20 cells were similar to type A MAO of A/J mouse and Chinese hamster brain cells and to type B MAO of Chinese hamster brain cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Dimerization can be utilized to double the molecular weight of proteins and peptides and potentially increase their avidity of binding to target receptors. These dimerization effects may be utilized to increase in vivo half-lives in a manner similar to PEGylation and may also improve biological activity. In this paper, we report a new strategy for the synthesis of N-terminally linked protein and peptide homodimers utilizing native chemical ligation to conjugate a short dithioester linker to the N-terminal cysteines of protein and peptide monomers to form dimers in a single step. This strategy is general and has been applied to the production of dimers from three recombinantly expressed polypeptides, the IgG binding domain Protein G, an HIV entry inhibitor peptide C37H6, and human interleukin-1 receptor antagonist (IL-1ra). The biological activities of the C37H6 and IL-1ra dimers produced by these methods were retained or even slightly increased when compared to their corresponding monomers.  相似文献   

18.
Kinetic and thermodynamic stability of bacterial intracellular aggregates   总被引:1,自引:0,他引:1  
Espargaró A  Sabaté R  Ventura S 《FEBS letters》2008,582(25-26):3669-3673
Protein aggregation is related to many human disorders and constitutes a major bottleneck in protein production. However, little is known about the conformational properties of in vivo formed aggregates and how they relate to the specific polypeptides embedded in them. Here, we show that the kinetic and thermodynamic stability of the inclusion bodies formed by the Abeta42 Alzheimer peptide and its Asp19 alloform differ significantly and correlate with their amyloidogenic propensity and solubility inside the cell. Our results indicate that the nature of the polypeptide chain determines the specific conformational properties of intracellular aggregates. This implies that different protein inclusions impose dissimilar challenges to the cellular quality-control machinery.  相似文献   

19.
Extracts from the lignifying xylem of Sitka spruce that were enriched in cell-wall-associated glycoproteins contained peroxidase and oxidase activity and readily formed lignin-like water-insoluble dehydrogenation polymers (DHPs) from coniferyl alcohol (CA) when supplied with H2O2. During the formation of DHPs, the abundance of a number of polypeptides in the extracts was diminished. However, these polypeptides were also diminished in control reactions that contained H2O2 but lacked CA. Polypeptides could be recovered from the DHPs by heating in SDS-PAGE sample buffer but no insolubilised polypeptides could be recovered from the + H2O2 reactions. Although most of the DHP-bound polypeptides were easily removed by pre-washing the DHPs, two polypeptides at 125 and 52 kDa remained tightly bound to the DHPs. The abundance of the two DHP-bound polypeptides mirrored the diminution of 120 and 46 kDa polypeptides in the extracts. The N-terminal protein sequences of the 125 and 52 kDa DHP-bound polypeptides were essentially identical to the sequences obtained from the 120 and 46 kDa polypeptides from the extracts, which confirmed that the DHP-bound polypeptides were derived from these soluble polypeptides. The 125-kDa DHP-bound polypeptide yielded an N-terminal protein sequence that was identical to a laccase-type oxidase previously identified in similar extracts from lignifying Sitka xylem. The N-terminal protein sequence of the 46-kDa polypeptide was homologous with a subset of plant peroxidases. The DHPs had tightly bound peroxidase and oxidase activity, which suggested that these polypeptides were active in their insolubilised state. The mechanism and selectivity of insolubilisation of these enzymes is discussed.  相似文献   

20.
The minimum sequence of the enzymatic (A) subunit of Shiga toxin (STX) required for activity was investigated by introducing N-terminal and C-terminal deletions in the molecule. Enzymatic activity was assessed by using an in vitro translation system. A 253-amino-acid STX A polypeptide, which is recognized as the enzymatically active portion of the 293-amino-acid A subunit, expressed less than wild-type levels of activity. In addition, alteration of the proposed nicking site between Ala-253 and Ser-254 by site-directed mutagenesis apparently prevented proteolytic processing but had no effect on the enzymatic activity of the molecule. Therefore, deletion analysis was used to identify amino acid residue 271 as the C terminus of the enzymatically active portion of the STX A subunit. STX A polypeptides with N-terminal and C-terminal deletions were released into the periplasmic space of Escherichia coli by fusion to the signal peptide and the first 22 amino acids of Shiga-like toxin type II, a member of the STX family. Although these fusion proteins expressed less than wild-type levels of enzymatic activity, they confirmed the previous finding that Tyr-77 is an active-site residue. Therefore, the minimum domain of the A polypeptide which was required for the expression of enzymatic activity was defined as StxA residues 75 to 268.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号