首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

2.
The carbamate insecticide carbaryl, at concentrations of 10 mg/l and above, significantly stimulated glutathione reductase (GR) and superoxide dismutase (SOD) activity in the cyanobacterium Nostoc muscorum. A low content of total glutathione (GSH + GSSG), decreased photosynthetic activity, and an increased level of H2O2 was observed in pesticide treated cyanobacteria. As no glutathione peroxidase was observed in this species, stimulation of GR and SOD activity, higher production of H2O2, and low glutathione level was attributed to the utilization of GSH to remove H2O2 spontaneously and nonenzymatically under conditions of pesticide toxicity.  相似文献   

3.
The antioxidant status of birch and ginkgo leaves during autumnal senescence was characterized by the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD). The contents of leaf H2O2 and ascorbate were used as indicators of oxidative stress. Degradation of chlorophyll (chl) during natural senescence was not accompanied either by an increase of H2O2 or by a decrease of reduced ascorbate. A transient decrease of reduced ascorbate in ginkgo and birch leaves in early senescence was accompanied by CAT inactivation. The activity of ionically-bound PODs was stimulated in late senescence in both species, when more than 30% of chl was degraded. Induction of MnSOD in both species and new isoforms of CuZnSOD in birch in late senescence was accompanied by the disappearance of other CuZnSOD isoforms in birch and FeSOD in ginkgo. The role of antioxidative enzymes in keeping ascorbate reduced and endogenous H2O2 at low levels in senescent leaves of deciduous trees was discussed.  相似文献   

4.
RpoE2 is an extracytoplasmic σ factor produced by Sinorhizobium meliloti during stationary growth phase. Its inactivation affected the synthesis of the superoxide dismutase, SodC, and catalase, KatC. The absence of SodC within the cell did not result in an increased sensitivity to extracellular superoxides. In contrast, the absence of KatC affected the resistance of S. meliloti to H2O2 during the stationary growth phase. A katC strain behaved as an rpoE2 strain during an H2O2 challenge, suggesting that the H2O2 sensitivity of the rpoE2 strain resulted only from the lack of KatC in this strain.  相似文献   

5.
Oxidative stress has long been linked to cell death in many neurodegenerative conditions. Treatment with antioxidants is a promising approach for slowing disease progression. In this study, we used the neuroblastoma SH-SY5Y cells as an in vitro model to first assess the effect of polypeptide from Chlamys farreri (PCF), a natural marine antioxidant, on H2O2-induced neuronal cell death. Pre-treatment of SH-SY5Y cells with PCF inhibited H2O2-induced cell death in a concentration-dependent manner. In parallel, intracellular reactive oxygen species generation and lipid peroxidation were inhibited by PCF. Under severe H2O2 insult, PCF promoted endogenous antioxidant defense components including glutathione peroxidase, catalase, superoxide dismutase, and glutathione. PCF also protected DNA from oxidative damage and enhanced the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine from DNA. Further, we found that PCF potentially prevented H2O2–induced cell apoptosis. When investigated mitogen-activated protein kinase signaling pathway, we found that pre-treatment of cells with PCF significantly blocked H2O2–induced phosphorylation of c- Jun N-terminal kinase of the mitogen-activated protein kinase family. However, PCF had little inhibitory effect on the H2O2–induced activation of extracellular signal-regulated kinase. Taken together, these data demonstrate that PCF prevents oxidative stress-induced reactive oxygen species production and c- Jun N-terminal kinase activation and may be useful in the treatment of neurodegenerative diseases.  相似文献   

6.
Taxicity of oxygen species such as free radicals and H2O2 has been invoked to explain a number of degradative processes in plants, most involving photo-oxidation. Since catalase is a major protectant against accumulation and toxicity of H2O2, we examined alterations in catalase activity in several plant species ( Pisum sativum L. cv. Greenfeast, Vigna radiata (L.) R. Wilcz, Cucumis sativus L. cv. Heinz Pickling, and Passiflora spp.) during chilling, and compared this change to change in H2O2 content. Catalase activity was reduced in a range of chilling sensitive and tolerant species by exposure to low temperature. This reduction in catalase activity correlated better with the onset of visible symptoms than with the treatment itself. Visible injury in turn was dependent on light and temperature differences. Hydrogen peroxide concentrations invariably decreased with low temperatures.
Reduction in catalase activity therefore does not necessarily imply accumulation of H2O2 to damaging levels. The absence of a clear inverse relationship between catalase activity and H2O2 concentration suggests the continued activity of other reactions that remove H2O2 and these may be important in the tolerance of plants to oxidative attack. Loss of catalase activity may result from the inability of damaged peroxisomal membranes to transport catalase precursors into the peroxisome.  相似文献   

7.
8.
Antioxidant enzyme activities in embryologic and early larval stages of turbot   总被引:15,自引:0,他引:15  
The antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6), selenium-dependent glutathione peroxidase (SeGPX; EC 1.11.1.9), glutathione reductase (EC 1.6.4.2) and DT-diaphorase (EC 1.6.99.2), plus total GPX activity (sum of SeGPX and Se-independent GPX activities), were studied in 13 500 g supernatants of embryos and 3-day and 11-day post-hatch larvae of turbot Scophthalmus maximus L. SOD activity decreased progressively during development from embryos to 11-day-old larvae, indicative of a decreased need to detoxify superoxide anion radical (O2). In contrast, catalase, SeGPX and glutathione reductase activities increased progressively from embryos to 11-day-old larvae, indicative of an increased need to metabolize hydrogen peroxide (H2O2) and organic peroxides. Consistent with the latter changes, levels of lipid peroxides (i.e. thiobarbituric acid reactive substances) increased 13-fold from embryos to 3-day-old larvae, whilst total peroxidizable lipid was indicated to decrease. Increases were seen for NADPH-dependent DT-diaphorase (after hatching) and total GPX (between 3 and 11 days post-hatch) activities, whilst no change was found in NADH-dependent DT-diaphorase activity. Overall, the results demonstrate a capacity for early life-stages of S. maximus to detoxify reactive oxygen species (O2 and H2O2) and other pro-oxidant compounds (organic peroxides, redox cycling chemicals). Furthermore, qualitative and quantitative antioxidant changes occur during hatching and development, possibly linked to such events as altered respiration rates (SOD changes) and tissue reorganization and development (catalase, SeGPX, lipid peroxidation).  相似文献   

9.
The effects of salt stress on antioxidative activities were investigated in a coastal halophyte, Cakile maritima . Two Tunisian accessions, Jerba and Tabarka, were compared. Plants were subjected to 100, 200, or 400 m M NaCl for 20 days. Parameters of oxidative stress [malondialdehyde (MDA), electrolyte leakage (EL), and hydrogen peroxide (H2O2) concentration], activities of several enzymes [superoxide dismutase (SOD), catalase (CAT), peroxydase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR)], and antioxidant molecules (ascorbate, ASC, and glutathione, GSH) were determined. Growth of Jerba plants was improved at 100 m M NaCl as compared to that of control. Tabarka growth was inhibited by salt at all NaCl concentrations. The relative salt tolerance of Jerba was associated with high antioxidant enzyme activities and glutathione content, together with low MDA content, EL, and H2O2 concentration. Lower antioxidant activities and higher MDA content, EL, and H2O2 concentration were found in Tabarka. As a whole, these data suggest that the capacity to limit oxidative damage is important for salt tolerance of C. maritima .  相似文献   

10.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

11.
Detection of hydrogen peroxide produced by meat lactic starter cultures   总被引:1,自引:1,他引:0  
Twelve strains of meat lactic starter cultures (Pediococcus spp. and Lactobacillus plantarum) were found to produce hydrogen peroxide in vitro. The (cumulative) amounts of H2O2 produced were measured through the peroxidative action of catalase on H2O2 and oxidation of added formate to CO2 by the H2O2-catalase complex formed. There was a problem in building a calibration curve for converting values of formate oxidation into amounts of H2O2, either by adding H2O2 directly to the assay mixture or having it produced via a glucose-glucose oxidase system.  相似文献   

12.
13.
14.
Vigna cutjang Endl. cv. Pusa Barsati seedlings, subjected to increasing degrees of water stress (−0.5, −1.0, −1,5 MPa), produced an approximately proportional increase in glycolate oxidase activity, hydrogen peroxide (H2O2) and proline content but a decrease in catalase activity, ascorbic acid and protein content. Leaf water potential (leaf ψ) and relative water content (RWC) were also lowered with increasing stress. Pretreatment with l -cysteine and reduced glutathione (10-3 M) decreased glycolate oxidase activity, H2O2 content, ascorbic acid oxidase activity, proline content and also slightly improved the water status of leaves stressed (−1.0 MPa) for 2 days. Pretreatment of non-stressed seedlings with these antioxidants had little or no effect. These studies indicate that treatment with antioxidants makes the plant tolerant against water stress by modulating the endogenous levels of H2O2 and ascorbic acid in stressed tissue.  相似文献   

15.
16.
The release of free H2O2 from spores of Clostridium perfringens and Bacillus megaterium during germination has been demonstrated using the scopoletin fluorescence assay. Scopoletin oxidation was markedly inhibited when exogenous catalase was added, and was also influenced by the concentration of spores. H2O2 release into the germination medium was observed to parallel the O2 consumption during germination, suggesting that the H2O2 may arise from certain O2-dependent metabolism associated with initiation of spore germination.  相似文献   

17.
The present study examined the response of antioxidant systems to NaCl stress and the relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. NaCl treatment caused an increase in the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in roots of rice seedlings, but had no effect on the activities of superoxide dismutase (SOD) and catalase (CAT). There were detectable differences in APX and GR isoenzymes between control and NaCl-treated roots. Levels of activity for SOD and CAT isoenzymes did not change in NaCl-stressed roots compared with the control roots. NaCl treatment produced an increase in H2O2, ascorbate (AsA), dehydro-ascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) levels. Treatment with 50 m M Na-gluconate (whose anion is not permeable to membrane) led to a similar Na+ level in roots to that with 100 m M NaCl. It was found that treatment with 50 m M Na-gluconate affected H2O2, AsA, and DHA levels, APX and GR activities, OsAPX and OsGR mRNA induction in the same way as 100 m M NaCl. These observed changes seem to be mediated by Na+ toxicity and not by Cl toxicity. On the other hand, it was found that NaCl, but not Na-gluconate and NaNO3, caused an increase in GSH and GSSG levels, indicating that Cl, rather than Na+, is responsible for the NaCl-increased GSH and GSSG levels in roots of rice seedlings.  相似文献   

18.
A quantitative method was developed for the measurement of micromolar quantities of H2O2 produced in Rogosa broth and peptonized milk broth by vaginal strains of lactobacilli isolated from women. The production of substantial amounts reproducibly was dependent on the growth of the organisms in acid media (pH ≤6.0) under anaerobic or micro-aerophilic conditions with continuous agitation. The addition to the media of the enzyme inhibitor, 3-amino-l,2,4-triazole, with or without catalase sometimes induced the production of H2O2 especially in non-agitated cultures. However, other agents such as concanavalin and o -dianisidine had no enhancing effect, and catalase or peroxidase alone completely inhibited H2O2 production.
The H2O2 produced in the acid media was stable for more than a month at 5°C but not in media at pH ≥ 7.0. Of five strains of lactobacilli tested by the quantitative method and by a chromogenic qualitative method (Rogosa-catalase or -peroxidase agar), three consistently produced H2O2 measurable by the former method, but none did so after growth of the organisms on Rogosa-catalase/peroxidase agar which suggested that the qualitative method was unreliable. The fact that H2O2 was produced in substantial quantities by some strains and not at all by others enabled H2O2-producers and non-producers to be distinguished easily.  相似文献   

19.
Abstract: We studied the action of H2O2 on the exocytosis of glutamate by cerebrocortical synaptosomes. The treatment of synaptosomes with H2O2 (50–150 µ M ) for a few minutes results in a long-lasting depression of the Ca2+-dependent exocytosis of glutamate, induced by KCl or by the K+-channel inhibitor 4-aminopyridine. The energy state of synaptosomes, as judged by the level of phosphocreatine and the ATP/ADP ratio, was not affected by H2O2, although a transient decrease was observed after the treatment. H2O2 did not promote peroxidation, as judged by the formation of malondialdehyde. In indo-1-loaded synaptosomes, the treatment with H2O2 did not modify significantly the KCl-induced increase of [Ca2+]i. H2O2 inhibited exocytosis also when the latter was induced by increasing [Ca2+]i with the Ca2+ ionophore ionomycin. The effects of H2O2 were unchanged in the presence of superoxide dismutase and the presence of the Fe3+ chelator deferoxamine. These results appear to indicate that H2O2, apparently without damaging the synaptosomes, induces a long-lasting inhibition of the exocytosis of glutamate by acting directly on the exocytotic process.  相似文献   

20.
The role of the ascorbate-glutathione cycle and AOS detoxification was investigated during leaf growth of defoliated and undefoliated plants of ryegrass ( Lolium perenne L. cv. Bravo). Antioxidants and related enzymatic activities were located in elongating leaf bases (ELBs) of undefoliated plants, following a decreasing gradient from basal (meristem) to distal segments, inverse to H2O2 levels. In the meristematic zone, the intense activity of the ascorbate-glutathione cycle and the supply of reducing power by the oxidative pentose phosphate pathway allowed the maintenance of both antioxidant reduction and H2O2 detoxification. BCNU (1–3 bis(2-chloroethyl)- N -nitrosourea), a glutathione reductase inhibitor, induced an increase in the meristematic zone in both H2O2 and antioxidant levels and a decrease in reduced/oxidized ratios of glutathione and ascorbate. These changes were associated with a reduced foliar regrowth activity. In the absence of BCNU, defoliation did not modify the ratios of reduced/oxidized antioxidants, although it triggered a temporary increase in H2O2 level. The results are discussed on the basis of a possible control of leaf growth by glutathione and ascorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号