首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of potential models for the interaction of cyclic AMP with protein kinase (RC or R2C2) have been examined. These include: Model 1, the simultaneous binding of cyclic AMP and release of C (catalytic subunit) from an independent RC protomer; Model 2, dissociation of an independent RC protomer prior to cyclic AMP binding to R (regulatory subunit); Model 3, cyclic AMP binding to RC prior to the dissociation of C; Model 4, random binding of cyclic AMP and dissociation of C with an interaction factor alpha less than 1; Model 5, release of 2C concomitant with the binding of one cyclic AMP to R2C2 followed by binding of the second cyclic AMP to the vacant R subunit; and Model 6, the simultaneous binding of cyclic AMP and release of C from one RC protomer resulting in a greater "affinity" of the other RC protomer for cyclic AMP, i.e., a cooperative version of Model 1. All the above models yield [cyclic AMP]0.5 values that increase with increasing protein concentration and Hill plots with average slopes equal to or less than 1.0 in the usual experimental range (10 to 90% of saturation). The Hill plots can be nonlinear, but for each model the exact shape of the plot changes in a characteristic (diagnostic) manner with changing protein concentration. Skeletal muscle protein kinase yields relatively linear Hill plots with napp values greater than 1.0. Consequently, Models 1 to 6 are not likely candidates. However, Model 2 is an excellent alternative model for proteins that display "negative cooperativity" with respect to the binding of a ligand. The properties of several "linear", "tetrahedral", and "all-or-nothing" cooperative models have also been examined. These include Models 7, A, B, and C and 8, A, B, and C which are cooperative versions of Models 2 and 3, respectively, and Model 9, a cooperative version of random Model 4. Model 9 is the most general model from which all others can be derived. Models 9 and 7, A, B, and C in which the prior dissociation of C greatly enhances or is an absolute requirement for cyclic AMP binding to R, are likely candidates for skeletal muscle protein kinase. All four of these models are capable of yielding Hill plots with average slopes greater than 1, and napp values that decrease with increasing protein concentration (in agreement with published data). In addition, in all four models the tight binding of MgATP to R2C2 yields decreased napp values and increased [cyclic AMP]0.5 values (also consistent with published data).  相似文献   

2.
Binding sites for [3H]cAMP on purified regulatory dimers of type II A-kinase (II-R2) are independent as assessed by equilibrium binding (KD = 6 +/- 1.3 nM at pH 7.2, 25 degrees; nH = 1.0) and by the lack of effect of unlabeled cAMP on dissociation rate (kd = 1.0 X 10(-3) sec -1 at pH 7.2, 25 degrees). In contrast, binding sites for [3H]cGMP on purified G-kinase displayed positively cooperative interactions in both equilibrium and dissociation assays with convex upward Scatchard plots, an nH of 1.6 and a dissociation rate (kd = 6.2 X 10(-3) sec-1 at pH 6.8, 0 degree) which was slowed by excess unlabeled cGMP (kd = 1.13 X 10(-3) sec-1 at pH 6.8, degree). Calculated transition state free energies of dissociation revealed that dissociation of nucleotide from G-kinase in the presence of cGMP was restrained by an energy barrier (20.8 kcal.mol-1) similar to that of II-R2 (20.9 kcal.mol-1), whereas dissociation from G-kinase without excess nucleotide occurred more easily (18.9 kcal.mol-1).  相似文献   

3.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

4.
The adenosine 3',5'-monophosphate receptor proteins of HeLa cells have been characterized. Using the Millipore filter assay, in the presence of 5'AMP and a phosphodiesterase inhibitor, specific [3H]cyclic AMP binding was detected in cytosol and in a nuclear-free particulate fraction, but not in nuclei. Both preparations exhibited biphasic Scatchard plots. 8-Azido[32P]cyclic AMP was used as a photoaffinity probe to covalently link ligand with receptor proteins. Proteins were then separated on denaturing gels and analyzed by autoradiography. The cytosol exhibited four specific binding proteins, with molecular weights of 46 000, 50 000, 52 000 and approx. 120 000. The 50 000/52 000 doublet could not be interconverted by phosphorylation-dephosphorylation reactions. On DEAE-cellulose, the 50 000-dalton protein eluted with peak II cyclic AMP-dependent protein kinase. The other proteins eluted with Peak I and with a binding peak not associated with kinase activity. Only the 50 000 protein was precipitated by type II protein kinase antibody from bovine heart. In the particulate fraction, the 120 000 protein was not detectable, but 8-azido[32P]cyclic AMP treatment revealed the other three proteins, with a relative increase in the 50 000-dalton protein. The results suggest that HeLa cells have four binding proteins which can associate with catalytic subunit and that the Peak I enzyme is heterogeneous, consisting of several distinct regulatory subunits.  相似文献   

5.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

6.
M Takahashi  B Blazy  A Baudras 《Biochemistry》1980,19(22):5124-5130
The binding of adenosine cyclic 3',5'-monophosphate (cAMP) and guanosine cyclic 3',5'-monophosphate (cGMP) to the adenosine cyclic 3',5'-monophosphate receptor protein (CRP) from Escherichia coli was investigated by equilibrium dialysis at pH 8.0 and 20 degrees C at different ionic strengths (0.05--0.60 M). Both cAMP and cGMP bind to CRP with a negative cooperativity that is progressively changed to positive as the ionic strength is increased. The binding data were analyzed with an interactive model for two identical sites and site/site interactions with the interaction free energy--RT ln alpha, and the intrinsic binding constant K and cooperativity parameter alpha were computed. Double-label experiments showed that cGMP is strictly competitive with cAMP, and its binding parameters K and alpha are not very different from that for cAMP. Since two binding sites exist for each of the cyclic nucleotides in dimeric CRP and no change in the quaternary structure of the protein is observed on binding the ligands, it is proposed that the cooperativity originates in ligand/ligand interactions. When bound to double-stranded deoxyribonucleic acid (dsDNA), CRP binds cAMP more efficiently, and the cooperativity is positive even in conditions of low ionic strength where it is negative for the free protein. By contrast, cGMP binding properties remained unperturbed in dsDNA-bound CRP. Neither the intrinsic binding constant K nor the cooperativity parameter alpha was found to be very sensitive to changes of pH between 6.0 and 8.0 at 0.2 M ionic strength and 20 degrees C. For these conditions, the intrinsic free energy and entropy of binding of cAMP are delta H degree = -1.7 kcal . mol-1 and delta S degree = 15.6 eu, respectively.  相似文献   

7.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

8.
The cell surface cyclic AMP receptor of Dictyostelium discoideum is under study in a number of laboratories with respect to both its role in development of the organism and the physiology of excitation-response coupling. We report here that when starved amoebae are exposed to the chaotrope guanidine hydrochloride at 1.8 M, they shed a particulate cyclic AMP binding activity into the medium. This activity is due to membrane vesicles which originate from the cell surface. The vesicles are enriched up to 150-fold in cyclic AMP binding activity and up to 14-fold in phospholipid content when compared to the starting amoebae. The cyclic AMP binding activity of the membrane vesicles is identical to that of the cell surface receptor with respect to the following properties; (i) it is lacking in preparations from unstarved, vegetative amoebae; (ii) it is not inhibited by cyclic GMP and is stimulated by calcium ions; (iii) it has very rapid rates of association and dissociation of bound cyclic AMP; (iv) it has two classes of binding sites with dissociation constants similar to those of the surface receptors of whole amoebae. The binding activity of the isolated membranes is stable for several days at 4 degrees C and the lower affinity binding sites are stable up to several months when stored at -80 degrees C. Due to enrichment and stability of the receptor in this preparation, it should be highly suitable for many types of studies. The usefulness is enhanced by the fact that the preparation does not contain detectable cyclic AMP phosphodiesterase activity.  相似文献   

9.
Plasma membranes from rat liver were found to contain at least two types of specific binding sites for cyclic [3H] adenosine 3', 5'-monophosphate (c[3H]AMP) with apparent dissociation constants of 0.51 +/- 0.14 and 2.9 +/- 0.6 nM (O degrees), respectively. The levels of these binding sites in liver plasma membranes were about 0.60 +/- 0.20 and 1.3 +/- 0.5 pmole/mg protein. The highest affinity binders for c[3H]AMP were found to be reduced in amount in plasma membranes of ascites hepatomas to 1/3 to 1/4 as compared with liver membranes in the cases of AH-130 and AH-7974 and to an almost undetectable level in the case of AH-130F(N). No difference in the endogenous phosphorylation of plasma membranes by (gamma-32P])ATP was, however, detected among liver and hepatoma plasma membranes. Addition of cAMP or cGMP at various concentrations did not affect the endogenous phosphorylation of plasma membranes of these cells.  相似文献   

10.
J Tsuzuki  J A Kiger 《Biochemistry》1978,17(15):2961-2970
Cyclic AMP-dependent protein kinase and its regulatory subunit were isolated from Drosophila melanogaster embryos. The profiles of cyclic AMP binding by these proteins were significantly different. In order to explain such a difference and to find the mode of enzyme activation by cyclic AMP, a kinetic study of cyclic AMP binding was carried out. First, the association rate constant k1 and dissociation rate constant k-1 in the cyclic AMP-regulatory subunit interaction at 0 degrees C were estimated to be 2.3 X 10(6)M-1s-1 and 1.1 X 10(-3)s-1, respectively. Secondly, the three possible modes of enzyme activation by cyclic AMP were mathematically considered and could be described by a unique formula: r=APt + BQt (A + B=1) in which the parameters A, B, P, and Q are equivalent to rate constants in the sense that the rate constants are simply expressed by these parameters. Thirdly, the values of the parameters and subsequently the values of rate constants involved in the possible mechanisms were evaluated using a curve-fitting technique and compared with experimental observation. It was then found that the following mechanism was the only one which fitted the experimental observations. Namely, RC + L k3 equilibrium k-3 LRC k4 equilibrium k-4 RL + C where R, C, and L represent the regulatory and catalytic subunits and cyclic AMP as a ligand. Thus, our results indicate that in the presence of cyclic AMP the active enzyme (C) is released from a ternary intermediate which is the primary product of the cyclic AMP-holoenzyme interaction. The estimated values of the rate constants are: k3=3.5 X 10(6)M-1s-1;k-3=7.3 X 10(-1)s-1;and k4=3.8 X 10(-2)s. These estimates indicate that the reaction LRC leads to RL + C is relatively slow and limits the rate of the overall reaction. By comparing k-3 and k4, it is apparent that a large part of newly formed ternary intermediate reverts to the holoenzyme.  相似文献   

11.
A binding protein specific for cyclic guanosine 3':5'-monophosphate (cyclic GMP) has been partially purified from extracts of the eubacterium Caulobacter crescentus and resolved from cyclic adenosine 3':5'-monophosphate (cyclic AMP)-binding activity. Binding of cyclic GMP is not affected by the addition of cyclic AMP or 5'-GMP, but is inhibited about 50 percent by a 50-fold molar excess of dibutyryl cyclic GMP or cyclic hypoxanthine 3':5'-monophosphate. The apparent dissociation constant for the cyclic GMP-binding protein complex is 1.1 X 10(-6) M.  相似文献   

12.
In this paper, cyclic adenosine-3′:5′-monophosphate-dependent protein kinase from yeast-like cells of Mucor rouxii is characterized. A scheme of partial purification is described together with Km for ATP (15 μm), histone (0.2 mg/ml), half-maximal activation constant for cyclic AMP (30 nm), and dissociation constant for the binding of cyclic AMP (40 nm). This enzyme is similar to type II protein kinases in two main aspects: the elution position in DEAE-cellulose chromatography and the readiness of its reassociation. But it has a singular characteristic: it does not dissociate completely with cyclic AMP alone (even at concentrations as high as 0.3 mm) unless histone or NaCl is present. NaCl displays several roles: helps dissociation, prevents inactivation of the catalytic subunit, inhibits enzyme activity, and does not prevent reassociation as occurs with type II protein kinases. Once the holoenzyme is dissociated, cyclic AMP is essential to maintain the enzyme in the dissociated state.  相似文献   

13.
Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate (cyclic AMP) formation and testosterone synthesis were studied in collagenase-dispersed interstitial cells from the adult rat testis. Binding of 125I-human chorionic gonadotropin (hCG) by isolated Leydig cells was of high affinity (Ka = 10(10) M-1) and low capacity, equivalent to approximately 6000 sites/cell. The binding data were consistent with the presence of a single order of receptors, with no interaction between binding sites. Stimulation of testosterone synthesis by increasing concentrations of hCG was completely dissociated from changes in cyclic AMP formation, and maximum activation of steroidogenesis was induced by hCG concentrations which had no effect upon cyclic AMP production. Kinetic analysis of gonadotropin-induced responses in dispersed Leydig cells also showed a marked dissociation between steroidogenesis and cyclic nucleotide formation. Low concentrations of hCG caused maximum stimulation of testosterone production which was not accompanied by a rise in cyclic AMP formation at any time after addition of gonadotropin. Higher concentrations of hCG caused marked elevations of cyclic AMP at progressively earlier time intervals, but did not alter the 20 to 30 min lag period required for induction of testosterone synthesis. These observations indicated that occupancy of gonadotropin receptors occurs over a much wider range of hCG concentration than that required for maximum steroidogenesis.  相似文献   

14.
The level of adenosine 3',5'-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0 X 10(-7)M and 1.5 X 10(-6)M, respectively. The activity of adenylate cyclase in a 105 000 X g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5 X 10(-6)M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

15.
K K Hui  J L Yu 《Life sciences》1987,40(13):1259-1265
We have investigated the effects of ketotifen on the cyclic adenosine 3',5'-monophosphate (cyclic AMP) response of intact human lymphocyte and its interaction with adenylate cyclase activating agents. In the presence of cyclic AMP phosphodiesterase inhibitor (3-isobutyl-1-methyl-xanthine), ketotifen (10(-8)-10(-4) M) caused an 80% increase in cyclic AMP content of human lymphocyte, a magnitude similar to that observed with hydrocortisone. The cyclic AMP level peaked at about 15 minutes and remained elevated for at least 45 minutes. In addition, ketotifen (10(-6)-10(-4) M) markedly potentiated the effect of several adenylate cyclase stimulating agents, including L-isoproterenol, prostaglandin E1 and forskolin. The biochemical mechanisms underlying these effects are unknown. It may be at least partly related to the ability of ketotifen to reverse and prevent beta 2 adrenoceptor desensitization and to promote the formation of hormone - nucleotide - high affinity receptor complex. These effects may contribute to its prophylactic effect in the treatment of bronchial asthma.  相似文献   

16.
Homogeneous preparations of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase from rabbit skeletal (Peak I) and bovine heart muscle have been compared. Each enzyme has an S20,w value of 7.0. Each enzyme binds 2 mol of cyclic AMP per mol of enzyme and is dissociated in the presence of saturating concentrations of cyclic AMP into a demeric regulatory subunit-cyclic AMP complex and two catalytic subunits. The isolated subunits recombine, resulting in the formation of the original holoenzyme in each case. Several differences between the two enzymes were found. Different salt concentrations are necessary for elution of the respective enzyme from DEAE-cellulose. Their regulatory subunits differ with respect to their sedimentation constants and mobility on sodium dodecyl sulfate gel electrophoresis. The regulatory subunit of the heart enzyme is rapidly phosphorylated by MgATP but this does not occur with the skeletal muscle enzyme. MgATP is bound with high affinity only to the skeletal muscle enzyme. The enzymes have different apparent dissociation constants and Hill coefficients for cyclic AMP binding. With the skeletal muscle enzyme MgATP increases the dissociation constants for cyclic AMP about 10-fold and decreases the Hill coefficient, while with the heart enzyme phosphorylation decreases the cissociation constant for cyclic AMP 5- to 6-fold and increases the Hill coefficient. Different concentrations of cyclic AMP are required to dissociate the skeletal and heart muscle enzymes. The presence of MgATP increases the concentration of cyclic AMP required to dissociate the skeletal muscle enzyme but decreases the concentration necessary to dissociate the heart enzyme.  相似文献   

17.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

18.
To assess the effects of cyclic AMP on amino acid transport and incorporation into aortic tissue protein, rat aortic rings were incubated with the cyclic AMP analog, N6-monobutyryl cyclic AMP (MBcAMP), the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (MIX), and radiolabeled amino acids. Subsequently, the aortic rings were homogenized in 5% trichloroacetic acid (TCA) and processed for liquid scintillation counting. Radioactivity present in the TCA supernatant following centrifugation was used to estimate amino acid transport. TCA-precipitable radioactivity was used as a measure of amino acid incorporation into protein. MBcAMP induced an increase in the uptake of [3H]alpha-aminoisobutyric acid into aortic rings and an increase in the incorporation of radiolabeled proline and leucine into TCA-precipitable protein. Similar effects were observed with low concentrations of MIX (0.025-0.25 mM); however, at higher concentrations of MIX, there was an attenuation of the effect or frank inhibition. Maximum stimulation of transport was observed within 90-120 min of the addition of MIX or MBcAMP to the incubation medium, whereas the effect on amino acid incorporation was not detectable until after 12 h of exposure to MIX or MBcAMP. The effects of cyclic AMP on transport were observed in both the tunica media and the tunica adventitia, whereas the effects on amino acid incorporation into protein were observed only in the tunica media. These data are consistent with a possible role for cyclic AMP in promoting changes in the tunica media that could lead to the development of vascular hypertrophy.  相似文献   

19.
The role of cyclic AMP in the regulation of cartilage macromolecule synthesis in vitro was studied in pelvic cartilage from 10-12 day chick embryos. Incubation of cartilages in medium containing 0.5 mM cyclic AMP resulted in a 30% inhibition of 35SO4-2, [3H]leucine and [3H]uridine incorporation into proteoglycan, total protein and RNA, respectively. Higher concentrations of cyclic AMP had no greater effects. In contrast, butyrylated cyclic AMP derivatives (0.5-5.0 mM) added to the incubation medium stimulated (50-100%) the incorporation of these radiolabeled precursors into cartilage macromolecules. Theophylline, in concentrations (0.1-0.5 mM) which raise intracellular cyclic AMP, also increases the incorporation of radiolabeled precursors into macromolecules. The data indicate that exogenous cyclic AMP and butyrylated cyclic AMP derivatives have paradoxical effects on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives, not exogenous cyclic AMP, mimic the effects of intracellular cyclic AMP. Incubation of embryonic chicken cartilage with exogenous cyclic AMP results in the extracellular degradation of the cyclic AMP to adenosine. Adenosine (0.125 mM) inhibits precursor incorporation into cartilage macromolecules. The metabolism of exogenous cyclic AMP generates sufficient adenosine to account for the observed inhibitory effects of exogenous cyclic AMP on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives are not degraded during incubation with cartilage. The data indicate that cartilage is a tissue in which the effect of cyclic AMP is to stimulate anabolic processes.  相似文献   

20.
In turkey erythrocytes bidirectional fluxes of sodium and potassium develop a time-dependent refractoriness to stimulation by endogenous cyclic adenosine 3':5'-monophosphate (cyclic AMP). The refractoriness of potassium influx and potassium outflux (both of which require extracellular sodium and potassium for stimulation by cyclic AMP) depends on the extracellular concentrations of sodium and potassium. In contrast, the refractoriness developed by sodium outflux (which does not require extracellular sodium or potassium for stimulation by cyclic AMP) does not depend on the extracellular concentrations of sodium or potassium. The refractoriness of these fluxes to cellular cyclic AMP reflects a decrease in the amount by which they can be maximally stimulated and appears to be proportional to the extent to which the transport system is utilized during the course of the incubation. Ouabain significantly reduces the rate at which cation transport in turkey erythrocytes becomes refractory to endogenous cyclic AMP. This effect of the glycoside is independent of the extracellular concentrations of sodium or potassium and does not correlate with how it alters the initial response of the transport systems to cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号