首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern of biomass and abundance of microzooplankton andmesozooplankton were studied over an annual cycle in the NuecesEstuary, Texas. Zooplankton samples and associated hydrographicdata were collected at four locations at biweekly intervalsfrom September 1987 through October 1988. This is a broad, shallowbay system with an average depth of 2.4 m. The concentrationof chlorophyll a in the surface waters averaged 7.4 µgl–1with 85% passing through a 20 µ mesh. Microzooplankton(20–200 µ in length) were extremely abundant throughoutthis study. Abundances of ciliates (including both aloricateciliates and tintinnids) ranged from 5000 to 400 000 l,with a mean of 38 000 l–1 of seawater over the entirecourse of the study. Mesozooplankton (200–2000 µmin length) abundance averaged 6100 m–3 for samples collectedduring the day and 10 100 m–3 for samples collected atnight. Mesozooplankton were dominated by Acartia tonsa whichmade up {small tilde}50% of the total. Biomass estimates formicrozooplankton (based on volume estimates) were often higherthan measured biomass of mesozooplankton. Given the shortergeneration times and higher metabolic rate of microzooplanktoncompared to mesozooplankton, microzooplankton should have agreater effect on the trophic dynamics of the Nueces Estuarythan mesozooplankton.  相似文献   

2.
Trophic interactions within the plankton of the lowland RiverMeuse (Belgium) were measured in spring and summer 2001. Consumptionof bacteria by protozoa was measured by monitoring the disappearanceof 3H-thymidine-labelled bacteria. Metazooplankton bacterivorywas assessed using 0.5-µm fluorescent microparticles (FMPs),and predation of metazooplankton on ciliates was measured usingnatural ciliate assemblages labelled with FMPs as tracer food.Grazing of metazooplankton on flagellates was determined throughin situ incubations with manipulated metazooplankton densities.Protozooplankton bacterivory varied between 6.08 and 53.90 mgC m–3 day–1 (i.e. from 0.12 to 0.86 g C–1bacteria g C–1 protozoa day–1). Metazooplankton,essentially rotifers, grazing on bacteria was negligible comparedwith grazing by protozoa (1000 times lower). Predation of rotiferson heterotrophic flagellates (HFs) was generally low (on average1.77 mg C m–3 day–1, i.e. 0.084 g C–1 flagellatesg C–1 rotifers day–1), the higher contribution ofHF in the diet of rotifers being observed when Keratella cochleariswas the dominant metazooplankter. Predation of rotifers on ciliateswas low in spring samples (0.56 mg C m–3 day–1,i.e. 0.014 g C–1 ciliates g C–1 rotifers day–1)in contrast to measurements performed in July (8.72 mg C m–3day–1, i.e. 0.242 g C–1 ciliates g C–1 rotifersday–1). The proportion of protozoa in the diet of rotiferswas low compared with that of phytoplankton (<30% of totalcarbon ingestion) except when phytoplankton biomass decreasedbelow the incipient limiting level (ILL) of the main metazooplantonicspecies. In such conditions, protozoa (mainly ciliates) constituted50% of total rotifer diet. These results give evidence thatmicrobial organisms play a significant role within the planktonicfood web of a eutrophic lowland river, ciliates providing analternative food for metazooplankton when phytoplankton becomesscarce.  相似文献   

3.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

4.
In Great South Bay, nanoplankton, (<20 sµm) accountedfor the largest fraction (56%) of zooplankton glutamate dehydrogenase(GDH) activity over a one year period. Microzooplankton (20–200µm) and macrozooplankton (>200 µm) accountedfor 20% and 24%, respectively. Total zooplankton ammonium regenerationin Great South Bay could account for 74% of the ammonium requirementby phytoplankton in winter, but in summer when phytoplanktondemand was greater, and zooplankton population was low, it suppliedless than 5%. This study suggests that the smallest zooplanktonfraction, less than 20 µm, can be the most important asregards nitrogen regeneration in estuarine environments. MacrozooplanktonGDH activity in Great South Bay ranged from 0.18 mg atoms NH+4-Nm–3 d–1 in winter to 3.34 mg atoms NH+4-N m–3d–1 in spring. Over an annual period, the averaged GDH/excretionratio was 20.4 3.5 (n = 10), and this ratio agrees well withobservations by other investigators. Observed macrozooplanktonexcretion rates showed a strong correlation with the excretionrates indirectly estimated from GDH activities. The GDH/excretionratio seems to vary depending on the internal physiologicalstates of zooplankton as well as food availability.  相似文献   

5.
Is Oithona the most important copepod in the world's oceans?   总被引:1,自引:0,他引:1  
Oithona has been described as the most ubiquitous and abundantcopepod in the world's oceans. Most of our knowledge of zooplanktonabundance and distribution is derived from net samples whosemesh size is often 200 µm or greater, and researchershave commented on losses of smaller organisms such as Oithonaand Oncaea, as well as juvenile forms of larger copepods, fromthese nets. We review the literature on this subject over thelast 50 years, and note that such nets remain in common usefor estimating the abundance, biomass and productivity of mesozooplankton.We show that an important fraction of mesozooplankton between200 and 800 µm in length is significantly under-representedin many current and historical data sets. A 5 year study ofthe abundance and size distribution of zooplankton biomass onthe Atlantic Meridional Transect has produced a very large dataset covering a wide range of ecosystem types across the AtlanticOcean, from subtropical oligotrophic to areas of upwelling andvernal blooming. We use these data to derive estimates of meshselection effects for commonly used nets on measures of zooplanktonabundance, biomass and secondary production, and compare theseestimates to those derived from the literature. We estimatethat the conventionalWP-2 net with a 200 µm mesh may capture<10% of conventional mesozooplankton numbers, whilst underestimatingbiomass by one-third and leading to an underestimate of secondaryproduction by two-thirds. This has serious implications forestimates of zooplankton-mediated fluxes and for the modellingof ecosystem dynamics.  相似文献   

6.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

7.
Zooplankton abundance, biomass (biovolume) and taxonomic compositionwere studied within an annual cycle (August 1995–October1996) in the Bay of Blanes (northwest Mediterranean). Weeklyzooplankton sampling included oblique tows made with a 200 µmJuday–Bogorov net, and vertical tows made with a 53 µmnet, to adequately sample both mesoplankton and the smallerzooplankton fractions. Total zooplankton abundance showed highvariability, lacking any clear seasonal pattern. However, thedifferent species within the zooplankton community displayeda clear succession throughout the year. In general, cyclopoidcopepods (Oithona spp.) and cladocerans (Peniliaavirostris)dominated the summer and autumn communities, whereas in winterand spring, calanoid copepods (Clausocalanus spp., Paracalanussp. and Centropages typicus) were predominant. The zooplanktonannual cycle in the Bay of Blanes does not resemble those ofother Mediterraneanlittoral areas, probably due to the inherentparticularity and variability associated with open coastal environments.On average, the abundance of organisms estimated with a traditional200 µm Juday–Bogorov net was 8.1 times lower thanthe values obtained with a 53 µm net. Even if only organisms>200 µm collected in the 53 µm tows were considered,the total abundance within the 53 µm net was still 4.4times higher than the estimates from the Juday–Bogorovnet. These results suggest the need for accurate samplings ofthe entire zooplankton assemblage when characterizing the structureand dynamics of zooplanktonic communities.  相似文献   

8.
Carbon dynamics in the 'grazing food chain' of a subtropical lake   总被引:1,自引:0,他引:1  
Studies were conducted over a 13 month period at four pelagicsites in eutrophic Lake Okeechobee, Florida (USA), in orderto quantify carbon (C) uptake rates by size-fractionated phytoplankton,and subsequent transfers of C to zooplankton. This was accomplishedusing laboratory 14C tracer methods and natural plankton assemblages.The annual biomass of picoplankton (<2 µm), nanoplankton(2–20 µm) and microplankton (<20 µm averaged60, 389 and 100 µg C 1–1 respectively, while correspondingrates of C uptake averaged 7, 51 and 13 µg C1–1h–1. The biomass of microzooplankton (40–200 µm)and macrozooplankton (<200 µm averaged 18 and 60 µgC 1–1, respectively, while C uptake rates by these herbivoregroups averaged 2 and 3 µg C 1–1 h–1. Therewere no strong seasonal patterns in any of the plankton metrics.The ratio of zooplankton to phytoplankton C uptake averaged7% over the course of the study. This low value is typical ofthat observed in eutrophic temperate lakes with small zooplanktonand large inedible phytoplankton, and indicates ineffectiveC transfer in the grazing food chain. On a single occasion,there was a high density (<40 1–1) of Daphnia lumholrzii,a large-bodied exotic cladoceran. At that time, zooplanktoncommunity C uptake was <20 µg C 1–1 h–1and the ratio of zooplankton to phytoplankton C uptake was near30%. If D.lumholrzii proliferates in Lake Okeechobee and theother Florida lakes where it has recently been observed, itmay substantially alter planktonic C dynamics.  相似文献   

9.
A seasonal study of phytoplankton and zooplankton was conductedfrom 1999 to 2001 in Pensacola Bay, Florida, USA, to furtherthe understanding of pelagic food webs in sub-tropical estuaries.Monthly measurements included size-fractionated chlorophyll(whole water, <5 µm, <20 µm), net- and picophytoplanktoncomposition analyzed using microscopy, flow cytometry, and HPLCpigment analysis. Additionally, zooplankton abundance and dryweight were determined from net tows. The results show a phytoplanktoncommunity dominated by the small size fraction (<5 µm),especially during the warm periods. The <5 µm chlorophyllfraction was strongly correlated with cyanobacterial abundanceand zeaxanthin. Cyanobacteria (cf. Synechococcus) abundancepeaked during summer in the upper estuary, typically exceeding3 x 109 L-1, and was strongly correlated with temperature. Cyanobacteriaabundance at the freshwater end of the Bay (in the EscambiaRiver) was very low, suggesting that cyanobacteria were notdelivered via freshwater. Two pigmentation types of cyanobacteriawere observed. Phycoerythrin-containing cells (PE-rich) weremore abundant at the marine end, while phycocyanin-containingcells (PC-rich) were more abundant in the upper estuary. Thelarger algae (>5–10 µm) were predominantly composedof diatoms, followed by chlorophytes, cryptophytes and dinoflagellates.The three most abundant genera of diatoms were Thalassiosira,Pennales and Cyclotella. Zooplankton biomass averaged 12.2 µgC L-1, with peak biomass occurring during May (  相似文献   

10.
Nitrate and ammonium uptake and ammonium regeneration rates(by zooplankton, microplankton and benthos) were measured onthe Atlantic continental shelf (Middle Atlantic Bight) duringsummer, 1980. Euphotic zone profiles of NO3 and NH4+uptake rates were similar in magnitude and vertical structureover a large geographical area. Microplankton NH4+ regenerationrates, although measured less frequently, also showed a relativelyconsistent vertical structure; rates were positively correlatedwith uptake rates. Nitrate assimilation (‘new’ production)was used to estimate vertical eddy diffusivity and paniculatesinking rates. Eddy diffusion estimates ranged from <0.1to >2.0 cm2 s–1 and were positively related to arealprimary production. Estimated particulate sinking rates averaged5 mg at Nm–2d–1 and compared favorably with sedimentationrates measured from free-floating and moored sediment traps.Benthic nitrogen regeneration rates represented <10% of thispaniculate nitrogen flux. Within the mixed layer, NH4+ assimilation(‘regenerated’ production) represented 50–80%of the total (NO3 + NH4+ ) nitrogen productivity and33% for the euphotic zone. Of this, 30% was attributed to zooplankton,63% to microplankton (<100 µm) and 7% to benthos. Onthe average, 74% of the microplankton NH4+ regeneration wasassociated with organisms passing 1 µm filters.  相似文献   

11.
The vertical disthbution of chlorophyll, zooplankton and physicalstructure were measured using a pumping system and CTD on twocruises in the Gulf of Maine during June and September 1982.The vertical distribution of chlorophyll was closely relatedto the density structure of the water column. In waters witha pronounced pycnocline subsurface chiorphyll maxima (SCM) werelocated at or just above the pycnocline. Chlorophyll concentrationswere maximal in the surface waters at those stations sampledin June where the pycnocline was not well defined. The relationshipbetween the zooplankton and chlorophyll distribution differedbetween cruises. In June, the zooplankton, particularly post-naupliarcopepods, were associated with the depth of the chlorophyllmaxirnum, while in September the post-naupliar copepods weremost abundant in the surface waters above the SCM at the stratifiedstations. During the September cruise we observed that the copepodnauplii were most abundant at the depth of the SCM, and thatthe larger protozoans (>35 µm) were most abundant atdepths of 55–85 m, which were well below the SCM and pycnocline. *Bigelow Laboratory for Ocean Sciences Contribution No. 83025  相似文献   

12.
Fine-scale vertical (5 – 40 m) and horizontal (50 –500 m) patterns of temperature, chlorophyll and abundance ofzooplankton species were sampled with a pump filtration systemin the surface waters offshore of San Diego in May and October,1978. Intense and consistent patterns were most apparent invertical profiles. Herbivorous zooplankton were more consistentlyassociated with the estimated primary productivity maximum thanwith the deeper chlorophyll maximum layer, which representeda phytoplankton biomass maximum. Predators were positively correlatedwith abundant potential prey species. Variations in body lengthwith depth suggest that these fine-scale patterns were sufficientlystable to influence zooplankton growth. Consequences for grazingand predator – prey interactions in pelagic ecosystemsare discussed. 1Present address: NOAA/NMFS Southwest Fisheries Center, PO Box271, La Jolla, CA 92038, USA  相似文献   

13.
Uptake and regeneration of inorganic N and P in oligotrophicFlathead Lake (Montana) were measured with 15N and 32P incorporationand dilution experiments, six times over a seasonal cycle. Theannual mean molar N P uptake ratio at ambient concentrationswas 13 9 (range = 4 8–34.2); uptake of nitrate, ammoniumand phosphate were always below saturation indicating both Nand P deficiency Organisms >280 µm were responsiblefor 0–60% of ammonium and 0–40% of phosphate regeneration,40–100% of the ammonium and 34–98% of phosphateregeneration occurred in the <3 µm fraction The <3µm fraction accounted for 7–70% of the ammoniumand 6–64% of the phosphate uptake. Results from antibiotictreatments indicated that both prokaryotic and eukaryotic ammoniumuptake was important, and that eukaryotes accounted for 53–98%of the ammonium regeneration. During thermal stratification,heterotrophic ammonium and phosphate regeneration by organisms>3 µm supplied much of the inorganic N and P in theepilimnion. Estimated rates of allochthonous and diffusive (i.e‘new’) ammonium, nitrate and phosphate input were<5% of biotic regeneration. These results suggests that (i)both N and P dynamics should be considered when examining nutrientregulation of primary productivity of oligotrophic lakes, (ii)bacteria probably compete with phytoplankton for both ammoniumand phosphate, (iii) biotic regeneration is the main sourceof nutrients to the epilimnion during stratification, and (iv)crustacean zooplankton were relatively unimportant sources ofregenerated ammonium and phosphate.  相似文献   

14.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

15.
Using an in situ approach, we have evaluated the phosphorusinputs from zooplankton in a high-mountain oligotrophic lake.Values of the specific gross release rate (SGRR) fluctuatedbetween 0.2 and 2.9 µg P mg–1 dry weight h–1,and were higher when the nauplii of Mixodiaptomus laciniatusdominated the zooplankton community. The rate of P recyclingby the zooplankton was high, reaching 1.6 µg P l–1day–1, and showed a highly consistent seasonal patternfrom one year to the next, with maxima in midsummer. Zooplanktonsize accounted for as much as 85% of the variance obtained inthe measurements of the specific rate of P release, while otherfactors, such as the quality or quantity of food, did not significantlyinfluence the SGRR changes. Among the models tested, only theone proposed by Peters (Int, Ver. Theor. Angew. Limnol. Verh.,19, 273–279, 1975) was useful for predictions in thissystem. The stoichiometric model of Hessen and Andersen (Arch.Hydrobiol., 35, 111–120, 1992), applied in this oligotrophicsystem, adequately predicted the phyto- and zooplankton dynamics,whereas the values of P release estimated using this model werefar higher than the excretion rates obtained experimentally.These differences were related to the type of egestion (formationof faecal pellets) of metazooplankton and to the relative importanceof the food resistance to digestion. We believe that in communitieswhere copepods constitute a substantial percentage of the zooplankton,an evaluation of the P release which is readily available [solublereactive phosphate (SRP), total dissolved phosphate (TDP)] toalgae and bacteria would not fit the predictions of generalmodels of mass balance; under these circumstances, assimilationefficiency proves to be the key parameter for predicting thereadily available P (excreted P).  相似文献   

16.
Zooplankton was sampled at 3-h intervals for a 48-h period from a coral reef of Tioman Island, Malaysia. It was size-fractionated into three size classes: 100–200, 200–335, and >335 μm using different sieves with different mesh sizes. Total zooplankton (>100 μm) abundance and biomass in the water column were high later at night (0300 h), not just after sunset as previously described in other studies. Only the largest size-fraction (>335 μm) of zooplankton significantly differed in biomass and abundance between day and night. The increase in the large zooplankton later in the night is suggested to be caused by the advection of pelagic species into the reef. This work has provided a measurement of the variation of zooplankton community over coral reef that can exist on a scale of hours.  相似文献   

17.
The impact of a cyclopoid copepod population on the protozoacommunity (two ciliate categories and Cryptomonas) was assessedweekly during the spring cohort of Cyclops vicinus (one monthduration) in hypereutrophic Lake Søbygård by insitu gradient experiments with manipulation of ambient zooplanktonabundance. As C.vicinus always made up >92% of the zooplanktonbiomass, the response of protozoa is assumed to be a resultof predation by the copepod. Significant effects of copepodbiomass on protozoa net population growth rates were obtainedin the four experiments. Copepod clearance rates were significantlyhigher on oligotrichs than on prostomatids and Cryptomonas butdeclined for all three protozoa categories during the firstthree weeks of the copepod cohort, probably because of the changein developmental instar composition of the copepod population.Grazing impact on protozoa at ambient copepod abundance wasconsiderable (range, 0.05–0.87 day–1) and could,together with the estimated reproductive potential of protozoans(range, –0.20–0.87 day–1), account for thedecline in abundance and biomass of protozoa during the cohortdevelopment. Carbon flow from the protozoa to C.vicinus (range,2.8–23.5 µg C l–1 day–1) documents thepresence of a trophic link between protozoa and the spring cohortof C.vicinus in Lake Søbygård.  相似文献   

18.
The contribution of nanoplankton (< 10 µm fraction)to winter – spring (1977 – 78) and summer (1978,1979) phytoplankton nitrogen dynamics in lower NarragansettBay was estimated from ammonium, nitrate and urea uptake ratesmeasured by 15N tracer methods. During the winter – spring,an average of 80% of chlorophyll a and nitrogen uptake was associatedwith phytoplankton retained by a 10 µm screen. In contrast,means of 51 – 58% of the summer chlorophyll a standingcrops and 64 – 70% of nitrogen uptake were associatedwith cells passing a 10 µm screen. Specific uptake ratesof winter – spring nanoplankton populations were consistentlylower than those of the total population. Specific uptake ratesof fractionated and unfractionated summer populations were notsignificantly different. Ammonium uptake averaged between 50and 67% of the total nitrogen uptake for both the total populationand the < 10µm fraction. The total population and the10 µm fraction displayed similar preferences for individualnitrogen species. Though composed of smaller cells, flagellatedominated nanoplankton assemblages may not necessarily takeup nitrogen at faster rates than diatom dominated assemblagesof larger phytoplankters in natural populations. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia  相似文献   

19.
Alcian Blue-stained particles in a eutrophic lake   总被引:1,自引:0,他引:1  
We used a neutral solution of Alcian Blue to stain transparentparticles in eutrophic Lake Frederiksborg Slotss0, Denmark.Alcian Blue-stained particles (ABSP) appeared to be similarto the so-called transparent exopolymer particles (TEP) identifiedwith an acidic solution of Alcian Blue. Our results on the abundance,size distribution and bacterial colonization of ABSP thereforereflect general patterns of TEP. The abundance of ABSP in thesize range 3–162 µm and retained by 3mu;m pore sizefilters averaged 3.62.49105 ml–1 (SD), which is amongthe highest concentrations reported for comparable size spectraof TEP. On average, 35 % of ABSP (by number) were colonizedby bacteria and 8.6105 bacteria ml–1 lake water wereattached to ABSP, which corresponds to 7% of the total bacterialabundance.  相似文献   

20.
The coupling between bacteria and heterotrophic nanoflagellates(HNF) was examined in nine lakes of low productivity for evidenceof the effects of various metazooplankton (i.e. rotifers, cladoceransand copepods) on this relationship. We considered the size ofcladocerans and, in contrast to most previous across-systemstudies, the three strata of the water column (i.e. epilimnion,metalimnion and hypolimnion). Rotifers were numerically dominantin all lakes and accounted for 45–84% of total metazooplanktonabundance, while the abundance of large cladocerans was relativelylow, ranging from 0.066 to 15.2 ind. L–1. The across-lakerelationship between bacteria and HNF was significant in thedeeper strata (meta- and hypolimnion) but not in the epilimnionand in the two groups of lakes separated on the basis of theiraverage number of large cladocerans (<5 and >5 ind. L–1,respectively). The results confirmed the negative impacts oflarge cladocerans on HNF, but also showed that rotifers, probablythrough grazing on HNF, may be an important factor causing variationin the bacteria–HNF relationship in unproductive waters.Quadratic models best described the relationships between metazooplanktonand the ratio of bacteria to HNF. This ratio seemed to be aresult of complex interactions between several factors, includingthe zooplankton composition and abundance and the depth of thelake. Indeed, this ratio significantly decreased across lakes,with increase in depth. In addition, shallower lakes (having<5 large cladocerans L–1 and fewer Polyarthra vulgaris)tended to have more bacteria and HNF and a higher ratio of bacteriato HNF than deeper lakes (which had >5 large cladoceransL–1 and substantial proportions of P. vulgaris). We suggestthat the epilimnion, metalimnion and hypolimnion of lakes betaken into account when analysing the bacteria–HNF relationshipas well as the cascading effects of zooplankton on microbialcommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号