首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Both conventional and genetic engineering techniques can significantly improve the performance of animal cell cultures for the large-scale production of pharmaceutical products. In this paper, the effect of such techniques on cell yield and antibody production of two NS0 cell lines is presented. On the one hand, the effect of fed-batch cultivation using dialysis is compared to cultivation without dialysis. Maximum cell density could be increased by a factor of ~5–7 by dialysis fed-batch cultivation. On the other hand, suppression of apoptosis in the NS0 cell line 6A1 bcl-2 resulted in a prolonged growth phase and a higher viability and maximum cell density in fed-batch cultivation in contrast to the control cell line 6A1 (100)3. These factors resulted in more product formation (by a factor ~2). Finally, the adaptive model-based OLFO controller, developed as a general tool for cell culture fed-batch processes, was able to control the fed-batch and dialysis fed-batch cultivations of both cell lines.Abbreviations A membrane area (dm2) - c Glc,F glucose concentration in nutrient feed (mmol L–1) - c Glc,FD glucose concentration in dialysis feed (mmol L–1) - c Glc,i glucose concentration in inner reactor chamber (mmol L–1) - c Glc,o glucose concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Lac,FD lactate concentration in dialysis feed (mmol L–1) - c Lac,i lactate concentration in inner reactor chamber (mmol L–1) - c Lac,o lactate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c LS,FD limiting substrate concentration in dialysis feed (mmol L–1) - c LS,i limiting substrate concentration in inner reactor chamber (mmol L–1) - c LS,o limiting substrate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Mab monoclonal antibody concentration (mg L–1) - F D feed rate of dialysis feed (L h–1) - F Glc feed rate of nutrient concentrate feed (L h–1) - K d maximum death constant (h–1) - k d,LS death rate constant for limiting substrate (mmol L–1) - k Glc monod kinetic constant for glucose uptake (mmol L–1) - k Lac monod kinetic constant for lactate uptake (mmol L–1) - k LS monod kinetic constant for limiting substrate uptake (mmol L–1) - K Lys cell lysis constant (h–1) - K S,Glc monod kinetic constant for glucose (mmol L–1) - K S,LS monod kinetic constant for limiting substrate (mmol L–1) - µ cell-specific growth rate (h–1) - µ d cell-specific death rate (h–1) - µ d,min minimum cell-specific death rate (h–1) - µ max maximum cell-specific growth rate (h–1) - P Glc membrane permeation coefficient for glucose (dm h–1) - P Lac membrane permeation coefficient for lactate (dm h–1) - P LS membrane permeation coefficient for limiting substrate (dm h–1) - q Glc cell-specific glucose uptake rate (mmol cell–1 h–1) - q Glc,max maximum cell-specific glucose uptake rate (mmol cell–1 h–1) - q Lac cell-specific lactate uptake/production rate (mmol cell–1 h–1) - q Lac,max maximum cell-specific lactate uptake rate (mmol cell–1 h–1) - q LS cell-specific limiting substrate uptake rate (mmol cell–1 h–1) - q LS,max maximum cell-specific limiting substrate uptake rate (mmol cell –1 h–1) - q Mab cell-specific antibody production rate (mg cell–1 h–1) - q MAb,max maximum cell-specific antibody production rate (mg cell–1 h–1) - t time (h) - V i volume of inner reactor chamber (culture chamber) (L) - V o volume of outer reactor chamber (dialysis chamber) (L) - X t total cell concentration (cells L–1) - X viable cell concentration (cells L–1) - Y Lac/Glc kinetic production constant (stoichiometric ratio of lactate production and glucose uptake) (–)  相似文献   

2.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

3.
The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation and aeration was evaluated through the oxygen volumetric mass transfer coefficient (kLa). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; kLa of 33.7 h−1), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when kLa varied from 4.4 to 33.7 h−1. The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation.  相似文献   

4.
A fourth order Runge–Kutta approximation was used to determine the Monod kinetics of Candida rugopelliculosa by using unsteady state data from only one continuous unsteady state operation at a fixed dilution rate. The maximum microbial growth rates, max, and half saturation coefficient, K s, were 0.82 ± 0.22 h–1 and 690 ± 220 mg soluble chemical oxygen demand (SCOD) l–1, respectively. The microbial yield coefficient, Y, and microbial decay rate coefficient, k d, were 1.39 ± 0.22 × 104 cells mg–1 SCOD and 0.06 ± 0.01 h–1, respectively.  相似文献   

5.
Summary Batch cultures of Medicago sativa cells have been carried out in the dark under aerobic conditions using lactose as the sole carbon source. The stoichiometric analysis has been correlated with both the oxygen demand and the cell productivity in an oxygen-limited cultivation. The minimum oxygen transfer has been estimated to be 12.5 h–1, i.e., 0.3 v.v.m; this initial aeration rate led to cell necrosis. Starting with a low oxygen transfer coefficient kL·a and increasing the air flow rate during the course of fermentation gave an exponential growth phase. The maximum specific growth rate was 0.012 h–1 and the growth yield was 0.43 g.d.w./g. of lactose. On the basis of the mass-balance relation the maintenance coefficient and the maximum growth yield have been calculated.  相似文献   

6.
Summary The influence of different operational parameters, such as the dilution rate (D) and the bleeding rate (B), in the production of a flocculent strain ofLactobacillus plantarum was studied. The effect of the dilution rate was demonstrated to be related to the lactic acid concentration inside the reactor. The effect of the bleeding rate was shown to be critical in the stabilization of the operation (due to a better pH control). It also allowed a continuous recovery of cells outside the reactor. Viability testing of the lactic starter cultures showed that operation with cell purge increased the viability of the starter cultures obtained.Nomenclature B Bleeding rate, h–1 - D Dilution rate, h–1 - F Feed flow rate, L h–1 - I Feed velocity, m h–1 - Specific growth rate, h–1 - v Lactic acid specific productivity, g g–1 h–1 - P Product concentration (lactic acid), g L–1 - P out Product concentration leaving the system, g L–1 - Q b Bleeding flow rate, L h–1 - R Recirculation velocity, m h–1 - S Substract concentration, g L–1 - t Time, h - T p Time of ascensional flow (length of the column/total ascensional velocity), h - T r Residence time (1/D), h - V Volume of the reactor, L - X Cell concentration, g L–1 - X out Cell concentration leaving the system, g L–1  相似文献   

7.
The O2 mass-transfer coefficient, k L a, decreased by 20% when the viscosity of a simulated broth increased from 1.38 × 10–3 to 3.43 × 10–3 Pa s in a split-cylinder airlift bioreactor with a broth volume of 41 l. When the paper pulp concentration was below 10 g l–1, k L a hardly changed. While at 30 g l–1, k L a decreased by 56%. C2O4 2– and Na+ were found to have some effect on the k L a value.  相似文献   

8.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

9.
Summary In the presence of protein, Hansenula polymorpha cultivation medium exhibits a maximum volumetric mass transfer coefficient, kLa, as function of the employed antifoam agents (soy oil and Desmophen 3600). With diminishing superficial gas velocity this maximum disappeas.Symbols EG Relative gas holdup - kLa Volumetric mass transfer coefficient (s–1) - wSL Superficial liquid velocity (cm s–1) - wSG Superficial gas velocity (cm s–1)  相似文献   

10.
Removal of toluene in waste gases using a biological trickling filter   总被引:12,自引:0,他引:12  
The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h–1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m–3 h–1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m–3 h–1, corresponding to a zero order removal rate of 0.11±0.03 g m–2 h–1 per unit of nominal surface area. The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m–3, corresponding to inlet gas concentrations above 0.7–0.8 g m–3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h–1 (k1A a=24–86 h–1). Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal. The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without. The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.  相似文献   

11.
S. cerevisiae was grown in a blackstrap molasses containing medium in batch and fed-batch cultures. The following parameters were varied: pH (from 4.0 to 6.5), dissolved oxygen (DO) (from 0 to 5.0 mg O2L–1) and sucrose feeding rate. When glucose concentration (S) was higher than 0.5 g L–1 a reduction in the specific invertase activity of intact cells (v) and an oscillatory behavior of v values during fermentation were observed. Both the invertase reduction and the oscillatory behavior of v values could be related to the glucose inhibitory effect on invertase biosynthesis. The best culture conditions for attainingS. cerevisiae cells suitable for invertase production were: temperature=30°C; pH=5.0; DO=3.3 mg O2L–1; (S)=0.5 g L–1 and sucrose added into the fermenter according to the equations: (V–Vo)=t2/16 or (V–Vo)=(Vf–Vo)·(e0.6t–1)/10.This work was supported by FAPESP  相似文献   

12.
The effects of superficial gas velocity in the riser (UGr) and gas entrance velocity (v) on the growth of Haematococcus pluvialis cultivated in a split-cylinder internal-loop airlift photobioreactor were investigated. Cell growth decreased when UGr and v were increased above 12 mm s–1 and 22.8 m s–1, respectively. The maximum cell density of H. pluvialis was 110×104 vegetative cells ml–1 and the chlorophyll-a titer was 7 mg l–1. The cell damage in the photobioreactor was greater when v was increased by an increase in UGr rather than by a decrease in sparger internal diameter. The overall volumetric mass transfer coefficient (kLa) of the photobioreactor was measured at the same UGr (6–24 mm s–1) and v (12–80 m s–1). The kLa values reached in the airlift photobioreactor were between 10 h–1 and 32 h–1.  相似文献   

13.
The feasibility of using fish farm effluents was evaluated as a source of inorganic nutrients for mass production of marine diatoms. Batch cultures were conducted from May to July 1995 in 16-L outdoor rectangular tanks, homogenized by gentle aeration (0.2 L air L–1 h–1). The effluents from the two fish farms studied were both characterized by high concentrations of inorganic materials (NH4-N, PO4-;P, Si(OH)4-Si) and were shown to support production of marine diatoms. Moreover, periodic measurements of inorganic matter levels in the cultures showed that clearance was efficacious (90% in 3–5 days). Water purification efficiency and culture productivity were further increased through appropriate nutrient balancing. When effluents were limited in silicate, addition of Na2SiO3 induced a significant increase in both diatom biomass and nutrient removal efficiency. In this case, up to 720 000 cell mL–1 were produced dominated bySkeletonema costatum. By contrast, in effluents loaded with silicate, adjustment of the N:P:Si ratio by NH4-N and PO4-P supplementation then gave increased biomass production. In this case, the maximum cell density found was 450 000 cell mL–1, dominated byChaetoceros spp.Author for correspondence  相似文献   

14.
Summary The solubility of oxygen in the liquid phase of a bioreactor was changed by a ramp change of temperature, and kLa was determined from the resulting return to equilibrium of dissolved oxygen activity. The maximum kLa that can be measured by this method in a standard laboratory scale bioreactor is 145 h–1 corresponding to a temperature change rate of 320°C h–1.Nomenclature p Difference between pG and pL (% saturation) - T Ramp change of temperature (°C) - E Temperature-compensated output from the oxygen electrode (A) - Eu Uncompensated output from the oxygen electrode (A) - kLa Overall volumetric mass transfer coefficient (h–1) - kLaTm Overall volumetric mass transfer coefficient at temperature Tm (h–1) - PG Dissolved oxygen activity in equilibrium with the gas phase (% saturation) - pL Dissolved oxygen activity (% saturation) - pLm Dissolved oxygen activity at time tm (% saturation) - t Time (h) - tm Time of maximum p (h) - T Temperature (°C) - Tcal Calibration temperature of the oxygen electrode (°C) - Tm Final temperature after a temperature shift (°C) - Tn Temperature at time tn  相似文献   

15.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

16.
Pseudomonas sp. 42A2 when incubated for 36 h with oleic acid (20 g l–1) in a stirred bioreactor, accumulated 10-hydroxy-8E-octadecenoic acid. Production in a 2 l bioreactor with 1.4 l of working volume, was increased from 0.65 g l–1 to 7.4 g l–1 with K L a values ranging between 15 and 200 h–1. A linear relationship was found between volumetric productivity and oxygen transfer rates and an exponential relation between the specific rate of product formation and specific growth rate.  相似文献   

17.
A shaking bioreactor system with twin internal ceramic membranes was developed for effective perfusion culture and applied to the continuous production of acetic acid using Acetobacter pasteurianus. The system makes it possible to carry out the back-washing of the membrane without stopping the continuous operation because one membrane can be washed by medium feed flow while another membrane provides filtration of the broth by the simple switching of the medium and the broth flow direction. The medium flow through the membrane could successfully wash the surface of the membrane thereby effectively maintaining the filtration ability. By using the system, continuous operation of more than 800 h was achieved and the maximum acetic acid productivity reached 13.4 g l–1 h–1 using air enriched with 40% O2.  相似文献   

18.
Kinetic data of ferrous iron oxidation by Thionacillus ferrooxidans were determined. The aim was to remove H2S (<0.5 ppm) from waste gas by a process proposed earlier. Kinetic data necessary for industrial scale-up were investigated in a chemostat airlift reactor (dilution rate 0.02–0.12 h–1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g 1–1 h–1, the maximum specific growth rate about 0.12 h–1 and the yield coefficient was found to be 0.007 g g–1 Fe2+. The specific O2 demand of an exponentially growing, ironoxidizing batch culture was 1.33 mg O2 mg–1 biomass h–1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. Correspondence to: W. Schäfer-Treffenfeldt  相似文献   

19.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

20.
The accumulation of biofilm by Acetobacterium sp. during continuous culture in an upflow anaerobic filter (UAF) growing on methanol-formate was the result of space velocity and inlet concentrations of substrate and Co+2. To achieve good development of biofilm, a space velocity of 0.38 h–1, inlet substrate concentrations of 125 mM of both methanol and formate, and Co+2 at 0.16 mM were required. Cell productivities in the effluent of the UAF-reactor were about 6-fold higher than in chemostat cultures (0.20 g l–1 h–1 for UAF and 0.035 g l–1 h–1 for chemostat) (previous studies), and the maximum vitamin B12 specific concentration was 5.1 mg g cell–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号