首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

2.
The cell populations and morphogenetic movements that contribute to the formation of the avian primitive streak and organizer-Hensen's node-are poorly understood. We labeled selected groups of cells with fluorescent dyes and then followed them over time during formation and progression of the primitive streak and formation of Hensen's node. We show that (1) the primitive streak arises from a localized population of epiblast cells spanning the caudal midline of Koller's sickle, with the mid-dorsal cells of the primitive streak arising from the midline of the epiblast overlying Koller's sickle and the deeper and more lateral primitive streak cells arising more laterally within the epiblast overlying the sickle, from an arch subtending about 30 degrees; (2) convergent extension movements of cells in the epiblast overlying Koller's sickle contribute to formation of the initial primitive streak; and (3) Hensen's node is derived from a mixture of cells originating both from the epiblast just rostral to the incipient (stage 2) primitive streak and later from the epiblast just rostral to the elongating (stage 3a/b) primitive streak, as well as from the rostral tip of the progressing streak itself. Collectively, these results provide new information on the formation of the avian primitive streak and organizer, increasing our understanding of these important events of early development of amniotes.  相似文献   

3.
Chick Ghox 2.9 protein, a homeodomain-containing polypeptide, is first detected in the mid-gastrula stage embryo and its levels increase rapidly in the late gastrula. At this time, the initially narrow band of expression along the primitive streak expands laterally to form a shield-like domain that encompasses almost the entire posterior region of the embryo and extends anteriorly as far as Hensen's node. We have found that this expression domain co-localizes with a morphological feature that consists of a stratum of refractile, thickened mesoderm. Antibody-staining indicates that Ghox 2.9 protein is present in all cells of this mesodermal region. In contrast, expression within the ectoderm overlying the region of refractile mesoderm varies considerably. The highest levels of expression are found in ectoderm near the streak and surrounding Hensen's node, regions that recent fate mapping studies suggest that primarily destined to give rise to neurectoderm. At the definitive streak stage (Hamburger and Hamilton stage 4) the chick embryo is especially sensitive to the induction of axial malformations by retinoic acid. Four hours after the treatment of definitive streak embryos with a pulse of retinoic acid the expression of Ghox 2.9 protein is greatly elevated. This ectopic expression occurs in tissues anterior to Hensen's node, including floor plate, notochord, presumptive neural plate and lateral plate mesoderm, but does not occur in the anteriormost region of the embryo. The ectopic induction of Ghox 2.9 is strongest in ectoderm, and weaker in the underlying mesoderm. Endoderm throughout the embryo is unresponsive. At stage 11, Ghox 2.9 is normally expressed at high levels within rhombomere 4 of the developing hindbrain. In retinoic-acid-treated embryos which have developed to this stage, typical rhombomere boundaries are largely absent. Nevertheless, Ghox 2.9 is still expressed as a discrete band, but one that is widened and displaced to a more anterior position.  相似文献   

4.
Amniote kidney tissue is derived from the intermediate mesoderm (IM), a strip of mesoderm that lies between the somites and the lateral plate. While much has been learned concerning the later events which regulate the differentiation of IM into tubules and other types of kidney tissue, much less is known concerning the earlier events which regulate formation of the IM itself. In the current study, the chick pronephros was used as a model system to identify tissues that play a role in patterning the IM and the critical time periods during which such patterning events take place. Explant studies revealed that the prospective pronephric IM is already specified to express kidney genes by stage 6, shortly after its gastrulation through the primitive streak, and earlier than previously reported. Transplant and explant experiments revealed that the lateral plate contains an activity that can repress IM formation in tissues that are already specified to express IM genes. In contrast, Hensen's node can promote formation of IM in the lateral plate. Paraxial tissues (presomitic mesoderm plus neural plate and notochord) were found to influence the morphogenesis of the nephric duct, but did not induce IM tissue to an appreciable extent. Combining lateral plate and paraxial tissue in vivo or in vitro led to induction of IM genes in the paraxial mesoderm but not in the lateral plate mesoderm. Based on these results and those of others, we propose a two-step model for the patterning of the IM. While tissue is still in the primitive streak, the prospective IM is relatively uncommitted. By stage 6, shortly after cells leave the primitive streak, a field of cells is generate which is specified to give rise to IM (Step 1). Subsequently, competing signals from the lateral plate and axial tissues modulate the number of cells that commit to an IM fate (Step 2).  相似文献   

5.
6.
Experimental analysis of the mechanisms of somite morphogenesis   总被引:1,自引:0,他引:1  
Earlier studies have suggested influences on somite morphogenesis by “somite-forming centers,” primitive streak regression, Hensen's node and notochord, and neural plate. Contradictions among these studies were unresolved.Our experiments resolve these conflicts and reveal roles of the primitive streak and notochord in shearing the prospective somite mesoderm into right and left halves and releasing somite-forming capabilities already present. The neural plate appears to be the principal inductor of somites.Embryo fragments containing no somite-forming centers, node, notochord, or streak nevertheless formed somites within 10 hr. Such somites disperse within the next 14–24 hr, which may explain why others failed to see them. In these fragments, an incision alongside the streak substitutes for streak regression in releasing somite formation. All such somites form simultaneously rather than in the normal anteroposterior progression. These fragments contain neural plate, but not notochord. We believe that physical attachment of somites to notochord in normal embryos stabilizes them and prevents dispersal.Pieces of epiblast were rotated 180° putting neural plate over lateral plate mesoderm regions. Somites were induced from the lateral plate by the displaced neural plate region. This is additional evidence of the powerful ability of neuroepithelium to induce somites.  相似文献   

7.
During chick gastrulation, inhibition of BMP signaling is required for primitive streak formation and induction of Hensen's node. We have identified a unique secreted protein, Tsukushi (TSK), which belongs to the Small Leucine-Rich Proteoglycan (SLRP) family and is expressed in the primitive streak and Hensen's node. Grafts of cells expressing TSK in combination with the middle primitive streak induce an ectopic Hensen's node, while electroporation of TSK siRNA inhibits induction of the node. In Xenopus embryos, TSK can block BMP function and induce a secondary dorsal axis, while it can dorsalize ventral mesoderm and induce neural tissue in embryonic explants. Biochemical analysis shows that TSK binds directly to both BMP and chordin and forms a ternary complex with them. These observations indicate that TSK is an essential dorsalizing factor involved in the induction of Hensen's node.  相似文献   

8.
Developmental fates of cells emigrating from the primitive streak were traced by a fluorescent dye Dil both in chick and in quail embryos from the fully grown streak stage to 12-somite stage, focusing on the development of mesoderm and especially on the timing of ingression of each level of somitic mesoderm. The fate maps of the chick and quail streak were alike, although the chick streak was longer at all stages examined. The anterior part of the primitive streak predominantly produced somites. The thoracic and the lumbar somites were shown to begin to ingress at the 5 somite-stage and 10 somite-stage in a chick embryo, and 6 somite-stage and 9 somite-stage in a quail embryo, respectively. The posterior part of the streak served mainly as the origin of more lateral or extra embryonic mesoderm. As development proceeded, the fate of the posterior part of the streak changed from the lateral plate mesoderm to the tail bud mesoderm and then to extra embryonic, allantois mesoderm. The fate map of the primitive streak in chick and quail embryo presented here will serve as basic data for studies on mesoderm development with embryo manipulation, especially for transplantation experiments between chick and quail embryos.  相似文献   

9.
10.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   

11.
Hensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells. In this work, we demonstrate that the node can be divided into functionally distinct subregions. Caudalward migration of the node depends on the presence of the most posterior region, which is closely apposed to the anterior portion of the primitive streak as defined by expression of the T-box gene Ch-Tbx6L. We call this region the axial-paraxial hinge because it corresponds to the junction of the presumptive midline axial structures (notochord and floor plate) and the paraxial mesoderm. We propose that the axial-paraxial hinge is the equivalent of the neuroenteric canal of other vertebrates such as Xenopus. Blocking the caudal movement of Hensen's node at the 5- to 6-somite stage by removing the axial-paraxial hinge deprives the embryo of midline structures caudal to the brachial level, but does not prevent formation of the neural tube and mesoderm located posteriorly. However, the whole embryonic region generated posterior to the level of Hensen's node arrest undergoes widespread apoptosis within the next 24 hours. Hensen's node-derived structures (notochord and floor plate) thus appear to produce maintenance factor(s) that ensures the survival and further development of adjacent tissues.  相似文献   

12.
Studies of the programming of Hox patterns at anterior spinal levels suggest that these events are accomplished through an integration of Hensen's node-derived and paraxial mesoderm signaling. We have used in vivo tissue manipulation in the avian embryo to examine the respective roles of node- derived and other local signals in the programming of a Hox pattern at posterior spinal levels. Hoxd10 is highly expressed in the lumbosacral (LS) spinal cord and adjacent paraxial mesoderm. At stages of LS neural tube formation (stages 12-14), the tailbud contains the remnants of Hensen's node and the primitive streak. Hoxd10 expression was analyzed after transposition of LS neural segments with and without the tailbud, after isolation of normally positioned LS segments from the stage 13 tailbud, and after axial displacement of posterior paraxial mesoderm. Data suggest that inductive signals from the tailbud are primarily responsible for the programming of Hoxd10 at neural plate and the earliest neural tube stages. After these stages, the LS neural tube appears to differ from more anterior neural segments in its lack of dependence on Hox-inductive signals from local tissues, including paraxial mesoderm. Our data also suggest that a graded system of repressive signals for posterior Hox genes is present at cervical and thoracic levels and likely to originate from paraxial mesoderm.  相似文献   

13.
Summary The time of determination of cartilage and skeletal muscle was studied by making chimeric grafts or explants of small tissue pieces from several stages of early chick or quail embryos. Chondrogenesis was assessed by histology or with antibodies directed against type II collagen or cartilage proteoglycan, while myogenesis was detected immunohistochemically with antibodies directed against 3 different muscle markers, including muscle myosin. Grafts from Hensen's node, primitive streak and segmental plate of donor embryos of Stage 3–5 (Hamburger and Hamilton) were transplanted under the ectoderm in the extraembryonic area of Stage 12 host embryos. In addition, explants and mesodermal cells were cultured on glass in DMEM+F12 medium supplemented with 10% FCS. The results showed that determined myogenic cells could first be detected in Hensen's node and the primitive streak at Stage 3+–4 and that they developed from mesodermal cells located between the epiblast and hypoblast. Myogenic cells also appeared in grafted and explanted segmental plate with or without notochord from Stage 5 embryos. On the other hand, cartilage cells only formed in grafted and explanted segmental plate that also contained notochord. RA (1 ng/ml) could induce the formation of cartilage cells in the explanted primitive streak without Hensen's node or notochord taken from Stage 3–5 embryos and could also promote the differentiation of myogenic cells in primitive streak from Stage 3 embryo. Thus RA can substitute for Hensen's node or the notochord in the induction of cartilage cells and has some stimulatory effects on the differentiation of myogenic cells. Additional evidence indicates that the hypoblast might play an inductive role in the formation of the notochord which may subsequently promote the differentiation of cartilage cells. Offprint requests to: M. Solursh  相似文献   

14.
15.
During avian development the earliest phase in which the avian embryo expresses axial features of a left-right axis is at the primitive streak stage. Until the stage of definitive primitive streak (streak 4 H&H), the axis seems to possess morphological bilateral symmetry. Morphological asymmetry begins only during the next few hours of incubation, with development of overt morphological and molecular asymmetry within Hensen's node (stage 5 H&H). In this report, we present an experimental study aimed at following the pattern of cell movements during primitive streak formation and gastrulation of specific left-right regions from earlier stages of the avian embryo. To determine the origin of cells contributing to each side of the primitive streak, we applied the dye Lysinated-Rodamine-Dextran (LRD) to one half, either left or right, of the pre-streak blastoderm (stages X–XIII, EG&K). We tried to estimate the relative cell contribution to primitive streak formation, and to the three germ layers evolving during gastrulation in the context of the left-right axis. Moreover, we asked whether the midline serves as a border, that is, as a physiological barrier preventing cell passing during gastrulation. Our results demonstrate that on each side of the axis, either the right or the left, most of the cells originate from the same half of a pre-streak blastoderm, populate the same half of the PS and contribute to tissues largely confined to that particular side. However, along the primitive streak, a few cells were detected on the opposite side of the midline. Moreover, variation in the number of cells crossing the midline at specific regions along the primitive streak was found. Most crossing cells were located near the mid rostrocaudal extent of the primitive streak, from 25–85% of its length. At the posterior end of the primitive streak, fewer crossing cells were detected. At the anterior region of the PS, that is, within Hensen's node, cells do not cross the midline. These results suggest that differences occur in the process of ingression along the rostrocaudal extent of the PS. Dev. Genet. 23:175–184, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Two distinct sources for a population of maturing axial progenitors   总被引:2,自引:0,他引:2  
In mammals, the primitive streak region and its descendant, the tail bud, are the source of nascent mesoderm and spinal cord throughout axial elongation. A localised population of long-term axial progenitors has been identified in a region of the tail bud, the chordoneural hinge, but the localisation of such progenitors at earlier stages is so far untested. By studying gene expression, we have shown that a specific topological arrangement of domains persists from the streak to the tail bud, and includes an area (the node-streak border) in which ectoderm that expresses primitive streak markers overlies the prospective notochord. This arrangement persists in the chordoneural hinge. Homotopic grafts show that, as in other vertebrates, cells in the streak and node predominantly produce mesoderm, whereas those in the node-streak border and lateral to the streak additionally produce neurectoderm. Node-streak border descendants populate not only neurectoderm, somites and notochord throughout the axis, but also the chordoneural hinge. Ectoderm lateral to the embryonic day (E)8.5 streak is later recruited to the midline, where it produces somites and chordoneural hinge cells, the position of which overlaps that of border-derived cells. Therefore, the E8.5 axial progenitors that will make the tail comprise cells from two distinct sources: the border and lateral ectoderm. Furthermore, heterotopic grafts of cells from outside the border to this region also populate the chordoneural hinge. Expression of several streak- and tail bud-specific genes declines well before elongation ends, even though this late population can be successfully transplanted into earlier embryos. Therefore, at least some aspects of progenitor status are conferred by the environment and are not an intrinsic property of the cells.  相似文献   

17.
18.
Lateral blastoderm isolates (LBIs) at the late gastrula/early neurula stage (i.e., stage 3d/4) that lack Hensen's node (organizer) and primitive streak can reconstitute a functional organizer and primitive streak within 10-12 hours in culture. We used LBIs to study the initiation and regionalization of the body plan. A complete body plan forms in each LBI by 36 hours in culture, and normal craniocaudal, dorsoventral, and mediolateral axes are re-established. Thus, reconstitution of the organizer is sufficient to re-establish a fully patterned body plan. LBIs can be modified so that reconstitution of the organizer does not occur. In such modified LBIs, tissue-type specific differentiation (with the exception of heart differentiation) and reconstitution of the body plan fail to occur. Thus, the reconstitution of the organizer is not only sufficient to re-establish a fully patterned body plan, it is also required. Finally, our results show that formation and patterning of the heart is under the control of the organizer, and that such control is exerted during the early to mid-gastrula stages (i.e., stages 2-3a), prior to formation of the fully elongated primitive streak.  相似文献   

19.
Three classes of signaling molecule, VG1, WNT and BMP, play crucial roles in axis formation in the chick embryo. Although VG1 and WNT signals have a pivotal function in inducing the primitive streak and Hensen's node in the embryo midline, their action is complemented by that of BMP antagonists that protect the prospective axial tissue from the inhibitory influence of BMPs secreted from the periphery. We have previously reported that a secreted factor, chick Tsukushi (TSK), is expressed in the primitive streak and Hensen's node, where it works as a BMP antagonist. Here, we describe a new crucial function for TSK in promoting formation of the primitive streak and Hensen's node by positively regulating VG1 activity. We provide evidence that TSK directly binds VG1 in vitro, and that TSK and VG1 functionally interact in axis formation, as shown by biological assays performed in chick and Xenopus embryos. Furthermore, we show that alternative splicing of TSK RNA leads to the formation of two isoforms (TSKA, originally designated as TSK, and TSKB) that differ in their C-terminal region. Biochemical and biological assays indicate that TSKB is a much weaker BMP antagonist than TSKA, although both isoforms efficiently interact with VG1. Remarkably, although both TSKA and TSKB are expressed throughout the early extending primitive streak, their expression patterns diverge during gastrulation. TSKA expression concentrates in Hensen's node, a well-known source of anti-BMP signals, whereas TSKB accumulates in the middle primitive streak (MPS), a region known to work as a node-inducing center where VG1 expression is also specifically localized. Loss-of-function experiments demonstrate that TSKB, but not TSKA, function is required in the MPS for induction of Hensen's node. Taken together, these results indicate that TSK isoforms play a crucial role in chick axis formation by locally modulating VG1 and BMP activities during gastrulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号