首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Using a newly developed abscisic acid (ABA)-affinity chromatography technique, we showed that the magnesium-chelatase H subunit ABAR/CHLH (for putative abscisic acid receptor/chelatase H subunit) specifically binds ABA through the C-terminal half but not the N-terminal half. A set of potential agonists/antagonists to ABA, including 2-trans,4-trans-ABA, gibberellin, cytokinin-like regulator 6-benzylaminopurine, auxin indole-3-acetic acid, auxin-like substance naphthalene acetic acid, and jasmonic acid methyl ester, did not bind ABAR/CHLH. A C-terminal C370 truncated ABAR with 369 amino acid residues (631–999) was shown to bind ABA, which may be a core of the ABA-binding domain in the C-terminal half. Consistently, expression of the ABAR/CHLH C-terminal half truncated proteins fused with green fluorescent protein (GFP) in wild-type plants conferred ABA hypersensitivity in all major ABA responses, including seed germination, postgermination growth, and stomatal movement, and the expression of the same truncated proteins fused with GFP in an ABA-insensitive cch mutant of the ABAR/CHLH gene restored the ABA sensitivity of the mutant in all of the ABA responses. However, the effect of expression of the ABAR N-terminal half fused with GFP in the wild-type plants was limited to seedling growth, and the restoring effect of the ABA sensitivity of the cch mutant was limited to seed germination. In addition, we identified two new mutant alleles of ABAR/CHLH from the mutant pool in the Arabidopsis Biological Resource Center via Arabidopsis (Arabidopsis thaliana) Targeting-Induced Local Lesions in Genomes. The abar-2 mutant has a point mutation resulting in the N-terminal Leu-348→Phe, and the abar-3 mutant has a point mutation resulting in the N-terminal Ser-183→Phe. The two mutants show altered ABA-related phenotypes in seed germination and postgermination growth but not in stomatal movement. These findings support the idea that ABAR/CHLH is an ABA receptor and reveal that the C-terminal half of ABAR/CHLH plays a central role in ABA signaling, which is consistent with its ABA-binding ability, but the N-terminal half is also functionally required, likely through a regulatory action on the C-terminal half.  相似文献   

5.
The H subunit of Mg-chelatase (CHLH) was shown to regulate abscisic acid (ABA) signaling and the I subunit (CHLI) was also reported to modulate ABA signaling in guard cells. However, it remains essentially unknown whether and how the Mg-chelatase-catalyzed Mg-protoporphyrin IX-production differs from ABA signaling. Using a newly-developed surface plasmon resonance system, we showed that ABA binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4. A new rtl1 mutant allele of the CHLH gene in Arabidopsis thaliana showed ABA-insensitive phenotypes in both stomatal movement and seed germination. Upregulation of CHLI1 resulted in ABA hypersensitivity in seed germination, while downregulation of CHLI conferred ABA insensitivity in stomatal response in Arabidopsis. We showed that CHLH and CHLI, but not CHLD, regulate stomatal sensitivity to ABA in tobacco (Nicotiana benthamiana). The overexpression lines of the CHLD gene showed wild-type ABA sensitivity in Arabidopsis. Both the GUN4-RNA interference and overexpression lines of Arabidopsis showed wild-type phenotypes in the major ABA responses. These findings provide clear evidence that the Mg-chelatase-catalyzed Mg-ProtoIX production is distinct from ABA signaling, giving information to understand the mechanism by which the two cellular processes differs at the molecular level.  相似文献   

6.
植物ABA受体及其介导的信号转导通路   总被引:3,自引:0,他引:3  
易文凯  王佳  杨辉  田云  卢向阳 《植物学报》2012,47(5):515-524
ABA是调控植物体生长发育和响应外界应激的重要植物激素之一。近年来, ABA受体的筛选和鉴定取得了突破性进展, 为植物中ABA信号转导通路的阐明奠定了重要基础。该文主要综述了ABA-binding protein/H subunit of Mgchelatase (ABAR/CHLH)、G protein-coupled receptor 2 (GCR2)、GPCR-type G protein 1/2 (GTG1/2)和pyrabactin resistant/PYR-like/regulatory component of ABA (PYR/PYL/RCAR)被报道为ABA受体的研究历程, 重点介绍了以ABAR/CHLH PYR/PYL/RCAR为受体的ABA信号转导通路模型的构建, 旨在为ABA受体及其信号转导通路的相关研究提供参考。  相似文献   

7.
8.
9.
Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using 3H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca2+ was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements.  相似文献   

10.
11.
It has been suggested that the phytohormone abscisic acid (ABA) plays an important role in the ripening of climatic fruit, although relevant genetic/molecular evidence is lacking. In the present study, a peach gene homologous to the putative Arabidopsis ABA receptor gene ABAR/CHLH, named PpCHLH, was isolated and characterized. PpCHLH is expressed ubiquitously as a single-copy gene in peach. Using tobacco rattle virus-induced gene silencing (VIGS), the PpCHLH gene was silenced in both peach leaves and fruit. The silenced PpCHLH gene affected leaf stomatal movement and delayed fruit ripening significantly. Although exogenously applied ABA promoted the ripening of the wild-type fruits, it could not rescue the RNAi chimeric fruit ripening. Collectively, these results demonstrate that PpCHLH plays a critical role in peach fruit ripening, and suggest that ABA might function as an important signal in the regulation of climacteric fruit development.  相似文献   

12.
张大鹏 《植物学通报》2011,46(4):361-369
该文全面评述了植物激素脱落酸(ABA)受体的研究进展概况,重点介绍细胞内ABA受体ABAR/镁螯合酶H亚基CHLH对ABA信号感知和向下游转导的研究进展,总结了ABAR介导的、起始于质体/叶绿体的ABA信号通路。ABAR是一个跨越叶绿体被膜的蛋白质,其N-端和C-端暴露在细胞质中;ABAR在细胞质一侧的C-端部分与一组WRKY转录因子(WRKY18、WRKY40、WRKY60)相互作用。WRKY18、WRKY40和WRKY60是一组转录抑制因子。它们互相协作,抑制下游重要的ABA信号调节子基因(如ABI4、ABI5、ABF4和MYB2等)的表达,从而负调节ABA信号通路。WRKY40是其中的核心调节子,WRKY18协助加强WRKY40对ABA信号的负调节。ABAR与ABA信号分子结合后,可以刺激WRKY40从细胞核转移至细胞质,促进ABAR与WRKY40的相互作用;进而激发一种未知因子(或信号系统),阻遏WRKY40的表达,从而解除WRKY40对ABA响应基因转录的抑制,最终实现ABA的生理效应。这些发现描述了一个从信号原初识别到下游基因表达的新的ABA信号通路。论文最后对未来该领域的研究方向进行了讨论。  相似文献   

13.
Abscisic acid (ABA) is a phytohormone that plays an important role in responses to environmental stresses as well as seed maturation and germination. Intracellular signaling by ABA has been rigorously investigated in relation to stomatal guard-cell regulation, seed germination and abiotic stress responses. However, intercellular regulation of ABA, including the molecular basis of ABA transport systems, has hardly been examined in any plant species. Based on genetic and biochemical analyses, we present evidence that one of the ATP-binding cassette (ABC) transporter genes, AtABCG25, encodes a protein that functions as an ABA exporter through the plasma membrane and is involved in the intercellular ABA signaling pathway. The ABC-type transporter is conserved in model species from E. coli to humans and is reported to transport various metabolites or signaling molecules in an ATP-dependent manner. At same time, another ABC transporter in Arabidopsis, AtABCG40, was independently reported to function as an ABA importer in plant cells. These findings strongly suggest the active control of ABA transport between plant cells, and they provide a novel impetus for examining ABA intercellular regulation.Key words: Arabidopsis, ABA, transport, ABC transporter, ABCG, transposontagged lines  相似文献   

14.
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.  相似文献   

15.
16.
On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors.  相似文献   

17.
18.
Nitric oxide (NO) has recently emerged as a second messenger involved in the complex network of signaling events that regulate stomatal closure. Little is known about the signaling events occurring downstream of NO. Previously, we demonstrated the involvement of phospholipase D (PLD) in NO signaling during stomatal closure. PLDδ, one of the 12 Arabidopsis PLDs, is involved in dehydration stress responses. To investigate the role of PLDδ in NO signaling in guard cells, we analyzed guard cells responses using Arabidopsis wild type and two independent pldδ single mutants. In this work, we show that pldδ mutants failed to close the stomata in response to NO. Treatments with phosphatidic acid, the product of PLD activity, induced stomatal closure in pldδ mutants. Abscisic acid (ABA) signaling in guard cells involved H2O2 and NO production, both required for ABA-induced stomatal closure. pldδ guard cells produced similar NO and H2O2 levels as the wild type in response to ABA. However, ABA- or H2O2-induced stomatal closure was impaired in pldδ plants. These data indicate that PLDδ is downstream of NO and H2O2 in ABA-induced stomatal closure.  相似文献   

19.
20.
姚春鹏  李娜 《植物学报》2006,23(6):718-724
脱落酸(abscisic acid, ABA)广泛参与植物生长发育的调控和对多种环境胁迫的适应性反应。有关ABA受体的研究已经在检测受体位置、纯化ABA特异性的结合蛋白和克隆ABA受体基因方面做出了许多重要的工作。最近相继发现一种RNA结合蛋白FCA和一种编码Mg离子螯合酶(Mg-chelatase)H亚基的CHLH作为两种不同的ABA受体分别调控植物的开花时间和介导种子萌发、幼苗生长及叶片的气孔运动。本文从实验策略的角度重点分析总结了研究脱落酸受体相对有效的途径与方法, 同时就有关的研究结果给予了评论和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号