首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.  相似文献   

2.
Transmembrane protein 14A (TMEM14A) is a member of TMEMs. Alterations in TMEMs expression have been identified in several types of cancer, but the expression and function of TMEM14A in ovarian cancer is still unclear. Here, analysis on the expression data of the Cancer Genome Atlas (TCGA) ovarian serous cystadenocarcinoma (OV) dataset demonstrated the overexpression of TMEM14A in ovarian cancer tissues compared with normal tissues, which was consistent with our real-time PCR analysis on ovarian cancer and normal tissues collected from 30 patients. In addition, TMEM14A knockdown in two ovarian cancer cell lines, A2780 and HO-8910, reduced cell proliferation, causes cell cycle arrest and suppressed cell invasion. Moreover, silencing of TMEM14A notably repressed G1/S cell cycle transition and cell invasion via down-regulating the expression of cell cycle related proteins (Cyclin D1, Cyclin E and PCNA) and metastasis-related proteins (MMP-2 and MMP-9), respectively. TMEM14A knockdown significantly reduced the phosphorylation status of Smad2 and Smad3, downstream effectors of TGF-β signalling. In summary, these results indicate that TMEM14A has a pro-tumorigenic effect in ovarian cancer cells, suggesting an important role of this protein in ovarian cancer oncogenesis and metastasis.  相似文献   

3.
4.
LIM and SH3 protein 2 (LASP2) belongs to nebulin family. It has been proven that LASP2 is involved in several cancers; however, its role in cervical cancer is unclear. Herein, we showed that LASP2 was highly expressed in cervical cancer tissues and cell lines. To knockdown LASP2 in cervical cancer cells, small interfering RNAs (siRNAs) targeting LASP2 (si-LASP2) were used. We found that cell proliferation, migration/invasion were markedly reduced after si-LASP2 transfection. A significant increase in E-cadherin expression, and decrease in N-cadherin and vimentin expressions were observed in si-LASP2 transfected cervical cancer cells. Knockdown of LASP2 caused significant inhibitory effect on the PI3K/Akt pathway. Treatment with the activator of the PI3K/Akt pathway, 740Y-P, abolished the effects of si-LASP2 transfection on cervical cancer cells. These findings suggested that LASP2 may be an oncogene through regulating the PI3K/Akt pathway in cervical cancer.  相似文献   

5.
NOB1 (NIN1/RPN12 binding protein 1 homolog), a ribosome assembly factor, is thought to be essential for the processing of the 20S pre-rRNA into the mature 18S rRNA. It is also reported to participate in proteasome biogenesis. However, the contribution of NOB1 gene dysfunction to the pathology of human diseases, such as gliomas, has not been addressed. Here, we detected expression levels of NOB1 mRNA in U251, U87, U373, and A172 cells by quantitative real-time PCR. To analyze the expression levels of NOB1 protein in glioma tissues, we performed immunohistochemistry on 56 pathologically confirmed glioma samples (7 Grade I cases, 19 Grade II cases, 16 Grade III cases, and 14 Grade IV cases). A recombinant lentivirus expressing NOB1 short hairpin RNA (shNOB1) was constructed and infected into U251 and U87-MG human glioma cells. We found that NOB1 mRNA was expressed in all four cell lines. The expression level of the NOB1 protein was significantly higher in high-grade gliomas than in low-grade gliomas. Knockdown of the NOB1 gene resulted in suppression of the proliferation and the colony-forming abilities of U251 and U87-MG cells, cell cycle arrest during the G0/G1 phase, and a significant enhancement of cell apoptosis. In addition, cell migration was significantly suppressed in U251 and U87-MG cells that were infected with the shNOB1-expressing lentivirus. These results suggest that NOB1 promotes glioma cell growth and migration and could be a candidate for molecular targeting during gene therapy treatments of glioma.  相似文献   

6.
G2 and S phase-expressed-1 (GTSE1) was recently reported to upregulate in several types of human cancer, based on negatively regulate p53 expression. However, its expression and functional roles in hepatocellular carcinoma (HCC) remain unknown. In this study, GTSE1 was observed to be highly expressed in HCC specimens and cell lines both at messenger RNA (mRNA) and protein levels. Furthermore, high GTSE1 expression was positively associated with tumor size, venous invasion, advanced tumor stage, and short overall survival. Moreover, we generated stable GTSE1 knockdown HCC cell lines to explore the effects of GTSE1 silencing on the growth and invasion of HCC in vitro. In determining the pathway through which GTSE1 regulated cell proliferation and invasion, GTSE1 silencing was found to inhibit AKT phosphorylation and downregulated cell cycle-related protein. In addition, GTSE1 downregulation decreased the growth of xenografts. In conclusion, these results indicated for the first time that overexpression of GTSE1 was involved in the progress of HCC, enhancing proliferation and promoting cell invasion in HCC cells.  相似文献   

7.
8.
Cripto-1 (CR-1) is a member of the epidermal growth factor-Cripto-1/FRL1/Cryptic gene family that plays a key role in the various malignant cancers. However, the role of CR-1 in prostate carcinoma (PCa) remains limited. The expression of CR-1 was down-regulated by small interfering RNA (siRNA). Western blot measured the expression levels of CR-1 and some related proteins. We performed Cell Counting Kit-8, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay and flow cytometry to detect the cellular proliferation and cycle. The transwell assay was used to observe cellular migration and invasion. The ability of angiogenesis was evaluated by tube formation assay. Our results showed that CR-1 knockdown markedly inhibited cell proliferation and induced cycle arrest in G1 phase, as p21 and p27 were up-regulated, whereas cyclin D1 and cyclin E1 were diminished. Moreover, silencing of CR-1 dramatically inhibited cell migration and invasion, repressed matrix metalloproteinases, and disturbed epithelial-mesenchymal transition. CR-1 siRNA suppressed the secreted level of vascular endothelial growth factor, and reduced protein level of Vascular endothelial growth factor receptor 2. We further found that decreased CR-1 expression inhibited FAK/Src/PI3K and Wnt/β-catenin signalling in PCa cells. These results suggested CR-1 might be served as an effective therapeutic target in PCa.  相似文献   

9.
High glucose has been known to play a pathogenic role in the development and progression of bladder cancer in diabetics, whereas the leading cause of death in such patients is mainly attributed to hyperglycemia-enhanced metastasis. In addition to the impact of glucose, cancer cells may be affected by laminar shear stress (LSS) generated from interstitial, blood, and/or lymphatic fluid flows during metastasis. Although the effect of flow-induced mechanical force on cancer pathophysiology has been extensively investigated, very little is understood regarding the cells that are simultaneously stimulated by LSS and hyperglycemia. To address this issue, the influence of LSS on bladder cancer cell motility in a hyperglycemic environment was examined. Based on the results of cell movement and protein expression analyses, we found that both cell migration and invasion were up- and downregulated by 25 mM glucose and 12 dynes/cm2 LSS, respectively. Furthermore, the motility of the cells with simultaneous hyperglycemic and LSS stimulations was significantly reduced compared with that of the cells stimulated by high glucose alone (P?<?0.05), demonstrating that the LSS rather than hyperglycemia played the dominant role in regulation of cell motility. These results implied that LSS with an intensity ≥?12 dynes/cm2 may serve as a feasible tool to reduce bladder cancer motility in diabetics.  相似文献   

10.
Fei X  Qi M  Wu B  Song Y  Wang Y  Li T 《FEBS letters》2012,586(4):392-397
It has been reported that expression of glucose transporter member 3 (GLUT3) is up-regulated in bladder cancers. However, the regulating mechanism remains unknown. Here, we assessed whether microRNAs (miRNAs) regulate GLUT3 expression in bladder cancers. In our study, miR-195-5p was identified to directly targeted GLUT3 3'-untranslated region (UTR) in bladder cancer T24 cells. Small interfering RNA (siRNA)- and miR-195-5p-mediated GLUT3 knockdown experiments revealed that miR-195-5p decreased T24 cells glucose uptake, inhibited cell growth and promoted cell apoptosis through suppression of GLUT3 expression. Therefore, miR-195-5p is a novel and also the first identified miRNA that targets GLUT3, and the aberrant decreased expression of miR-195-5p and consequent GLUT3 up-regulation may contribute to bladder carcinogenesis.  相似文献   

11.

Background

Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.

Methods

The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.

Results

The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.

Conclusions

We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
  相似文献   

12.
Astrocyte elevated gene-1 (AEG-1), upregulated in various types of malignancies including colorectal cancer (CRC), has been reported to be associated with the carcinogenesis. MicroRNAs (miRNAs) are widely involved in the initiation and progression of cancer. However, the functional significance of AEG-1 and the relationship between AEG-1 and microRNAs in human CRC remains unclear. The aim of this study was to investigate whether AEG-1 could serve as a potential therapeutic target of human CRC and its possible mechanism. We adopted a strategy of ectopic overexpression or RNA interference to upregulate or downregulate expression of AEG-1 in CRC models. Their phenotypic changes were analyzed by Western blot, MTT and transwell matrix penetration assays. MicroRNAs expression profiles were performed using microarray analysis followed by validation using qRT-PCR. Knockdown of AEG-1 could significantly inhibit colon cancer cell proliferation, colony formation, invasion and promotes apoptosis. Conversely, upregulation of AEG-1 could significantly enhance cell proliferation, invasion and reduced apoptisis. AEG-1 directly contributes to resistance to chemotherapeutic drug. Targeted downregulation of AEG-1 might improve the expression of miR-181a-2, -193b and -193a, and inversely inhibit miR-31 and -9. Targeted inhibition of AEG-1 can lead to modification of key elemental characteristics, such as miRNAs, which may become a potential effective therapeutic strategy for CRC.  相似文献   

13.
14.
The growth factor heregulin-β1 (HRG-β1), which is expressed in breast cancer, activates the HER-2 signaling pathway through induction of heterodimeric complexes of HER-2 with HER-3 or HER-4. It has been shown in many studies that HRG-β1 induces the tumorigenicity and metastasis of breast cancer cells. Matrix metalloproteinase (MMP) 9 is a key enzyme in the degradation of extracellular matrices, and its expression may be dysregulated in breast cancer invasion and metastasis. Resveratrol, a major component in grape, exhibited potential anticarcinogenic activities in both in vitro and in vivo studies. However, the inhibitory effect of resveratrol on HER-2-mediated expression of MMP-9 has not been demonstrated yet.

In the present study, we investigated the anti-invasive mechanism of resveratrol in human breast cancer cells. Human breast cancer MCF-7 cells were exposed to resveratrol (2, 5 and 10 μM). The expression activity of MMP-9 was measured by zymogram analysis. Phosphorylated levels of HER-2 and mitogen-activated protein kinase (MAPK)/ERK were measured by Western blot analysis. Total actin was used as internal control for protein expression. HRG-β1 induced the phosphorylation of HER-2/neu receptor and MMP-9 expression in human breast cancer MCF-7 cells. Resveratrol significantly inhibited HRG-β1-mediated MMP-9 expression in human breast cancer cells. MEK inhibitor induced a marked reduction in MMP-9 expression, and it suggested that ERK1/2 cascade could play an important role in HRG-β1-mediated MMP-9 expression. Furthermore, resveratrol significantly suppressed HRG-β1-mediated phosphorylation of ERK1/2 and invasion of breast cancer cells. However, resveratrol had negligible effects on either HRG-β1-mediated phosphorylation of HER-2 receptor or expression of the tissue inhibitor of MMP, tissue inhibitor metalloproteinase protein 1.

Taken together, our results suggest that resveratrol inhibited MMP-9 expression in human breast cancer cells. The inhibitory effects of resveratrol on MMP-9 expression and invasion of breast cancer cells are, in part, associated with the down-regulation of the MAPK/ERK signaling pathway.  相似文献   


15.
Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588]  相似文献   

16.
目的探讨补骨脂素对人膀胱癌T24细胞存活率、细胞周期、细胞凋亡和迁移的影响及其分子机制。 方法分别用细胞培养液、3‰二甲基亚砜(DMSO)和不同浓度(10、30、50、100 μg/mL)补骨脂素处理膀胱癌细胞分成对照组、DMSO组和补骨脂素组,CCK-8检测细胞存活率。流式细胞术检测细胞周期和细胞凋亡。划痕实验检测划痕愈合率。RT-qPCR法检测磷脂酰肌醇3激酶(PI3K)和蛋白激酶B (AKT) mRNA表达水平、Western blot法检测PI3K和AKT蛋白的表达及磷酸化情况。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。 结果与DMSO组比较,除10 μg/mL补骨脂素作用24 h外,其余浓度补骨脂素作用不同时间的细胞存活率随着补骨脂素浓度增高、作用时间延长而逐渐降低(P < 0.05)。与DMSO组比较,30、100 μg/mL补骨脂素干预24 h后,G1期细胞比例增多,G2/M期比例减少,细胞凋亡率[(9.16±0.97)%、(15.45±1.57)%比(1.02±0.36)%]升高,划痕愈合率[24 h:(45.00±3.44)%、(27.60±2.21)%比(66.10±2.61)%,48 h:(70.00 ± 3.40)%、(45.17±2.44)%比(85.17±3.85)%]降低,PI3K、AKT mRNA表达以及PI3K、AKT蛋白表达水平和磷酸化水平均降低(P均< 0.05)。 结论补骨脂素降低膀胱癌细胞存活率、阻滞细胞周期、诱导细胞凋亡和抑制细胞迁移,其机制可能与下调PI3K、AKT mRNA、蛋白表达及磷酸化水平有关。  相似文献   

17.
CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis, converts cholesterol into 27-hydroxycholesterol (27-HC). The relationship between CYP27A1 and cell proliferation was studied to determine the role of CYP27A1 in bladder cancer. The expression of CYP27A1 in three bladder cancer cell lines (T24, UM-UC-3 and 5637) were assessed by qRT-PCR and Western blotting, and cells with stable CYP27A1 expression were generated by lentiviral infection. Cell proliferation was detected by MTT assays, colony formation assays and a tumor xenograft model in vitro and in vivo, and the intracellular 27-HC and cholesterol secretion levels were detected by enzyme-linked immunosorbent assays (ELISA). The results revealed that CYP27A1 expression was downregulated in androgen receptor (AR)-positive T24/UM-UC-3 cells compared with AR-negative 5637 cell. After CYP27A1 expression was restored, cell proliferation was inhibited in vitro and in vivo because much more intracellular 27-HC was produced in the CYP27A1-overexpressing cells than in the control cells. Both T24 and UM-UC-3 cells treated with 27-HC showed similar results. In addition, CYP27A1/27HC could reduce the cellular cholesterol level in both T24 and UM-UC-3 cells by upregulating ATP-binding cassette transporters G1 and A1 (ABCG1 and ABCA1) through Liver X receptors (LXRs) pathway and downregulating low-density lipoprotein receptor (LDLR) expression. These findings all suggest that CYP27A1 is a critical cholesterol sensor in bladder cancer cells that may contribute significantly to bladder cancer proliferation.  相似文献   

18.
Transmembrane protease serine 3 (TMPRSS3) is a member of type II transmembrane serine proteases (TTSP) family, which play important roles in the development and progression of various cancers. However, the role of TMPRSS3 in glioma remains unclear. In the present study, we evaluated the expression patterns of TMPRSS3 in clinical tumor samples and glioma cell lines. The results showed that TMPRSS3 was highly expressed in both human glioma tissues and cell lines. Knockdown of TMPRSS3 in glioma cells by transfection with small interfering RNA targeting TMPRSS3 (si-TMPRSS3) significantly suppressed cell proliferation and migration/invasion. Moreover, knockdown of TMPRSS3 markedly elevated the apoptotic rate of glioma cells. Si-TMPRSS3 transfection also resulted in a remarkable increase in bax expression and a notable decrease in bcl-2 expression in glioma cells. Furthermore, TMPRSS3 knockdown markedly suppressed the expressions of Notch1 and Hes1. The results indicated that knockdown of TMPRSS3 exhibited antiglioma effect, which is associated with the inactivation of the Notch signaling pathway. These findings suggested that TMPRSS3 might be used as a therapeutic target for glioma treatment.  相似文献   

19.
20.
Here, we found that microRNA-24-1 (miR-24-1) is significantly reduced in bladder cancer (BC) tissues, suggesting that it functions as a tumour suppressor. Restoration of mature miR-24-1 inhibits cancer cell proliferation and induces apoptosis. Forkhead box protein M1 (FOXM1) is a direct target gene of miR-24-1, as shown by genome-wide gene expression analysis and luciferase reporter assay. Overexpressed FOXM1 is confirmed in BC clinical specimens, and silencing of FOXM1 induces apoptosis in cancer cell lines. Our data demonstrate that the miR-24-1FOXM1 axis contributes to cancer cell proliferation in BC, and elucidation of downstream signalling will provide new insights into the molecular mechanisms of BC oncogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号