首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell atrophy and loss in depression: reversal by antidepressant treatment   总被引:1,自引:0,他引:1  
Depression is associated with structural alterations in limbic brain regions that control emotion and mood. Studies of chronic stress in animal models and postmortem tissue from depressed subjects demonstrate that these structural alterations result from atrophy and loss of neurons and glial cells. These findings indicate that depression and stress-related mood disorders can be considered mild neurodegenerative disorders. Importantly, there is evidence that these structural alterations can be blocked or even reversed by elimination of stress and by antidepressant treatments. A major focus of current investigations is to characterize the molecular signaling pathways and factors that underlie these effects of stress, depression, and antidepressant treatment. Recent advances in this research area are discussed and potential novel targets for antidepressant development are highlighted.  相似文献   

2.
Molecular and cellular studies have demonstrated opposing actions of stress and antidepressant treatment on the expression of neurotrophic factors, particularly brain-derived neurotrophic factor, in limbic structures of the brain. These changes in neurotrophic factor expression and function result in structural alterations, including regulation of neurogenesis, dendrite length and spine density in hippocampus and prefrontal cortex (PFC). The deleterious effects of stress could contribute to the reduced volume of these brain regions in depressed patients. Conversely, the actions of antidepressant treatment could be mediated in part by blocking or reversing the atrophy caused by stress and depression. Recent studies have identified a novel, rapid-acting antidepressant, ketamine, in treatment-resistant depressed patients that addresses the limitations of currently available agents (i.e. delayed onset of action and low response rates). We have found that ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, causes a rapid induction of synaptogenesis and spine formation in the PFC via stimulation of the mammalian target of the rapamycin signalling pathway and increased synthesis of synaptic proteins. These effects of ketamine rapidly reverse the atrophy of PFC neurons caused by chronic stress and correspond to rapid behavioural actions of ketamine in models of depression. Characterization of a novel signalling pathway also identifies new cellular targets that could result in rapid and efficacious antidepressant actions without the side effects of ketamine.  相似文献   

3.
Bacopa monniera Wettst. (syn. Herpestis monniera L.; Scrophulariaceae) is a commonly used Ayurvedic drug for mental disorders. The standardized extract was reported earlier to have significant anti-oxidant effect, anxiolytic activity and improve memory retention in Alzheimer's disease. Presently, the standardized methanolic extract of Bacopa monniera (bacoside A - 38.0+/-0.9) was investigated for potential antidepressant activity in rodent models of depression. The effect was compared with the standard antidepressant drug imipramine (15 mg/kg, ip). The extract when given in the dose of 20 and 40 mg/kg, orally once daily for 5 days was found to have significant antidepressant activity in forced swim and learned helplessness models of depression and was comparable to that of imipramine.  相似文献   

4.
Childhood and adolescent depression is an increasingly problematic diagnosis for young people due to a lack of effective treatments for this age group. The symptoms of adult depression can be treated effectively with multiple classes of antidepressant drugs which have been developed over the years using animal and human studies. But many of the antidepressants used to treat adult depression cannot be used for pediatric depression because of a lack of efficacy and/or side effects. The reason that children and adolescents respond differently to antidepressant treatment than adults is poorly understood. In order to better understand the etiology of pediatric depression and treatments that are effective for this age group, the differences between adults, children and adolescents needed to be elucidated. Much of the understanding of adult depression has come from studies using adult animals, therefore studies using juvenile animals would likely help us to better understand childhood and adolescent depression. Recent studies have shown both neurochemical and behavioral differences between adult and juvenile animals after antidepressant treatment. Juvenile animals have differences compared to adult animals in the maturation of the serotonergic and noradrenergic systems, and in dose of antidepressant drug needed to achieve similar brain levels. Differences after administration of antidepressant drug have also been reported for adrenergic receptor regulation, a physiologic hypothermic response, as well as behavioral differences in two animal models of depression. The differences between adults and juveniles not only in the human response to antidepressants but also with animals studies warrant a specific distinction between the study of pediatric and adult depression and the manner in which new treatments are pursued.  相似文献   

5.
Modelling of complex psychiatric disorders, e.g., depression and schizophrenia, in animals is a major challenge, since they are characterized by certain disturbances in functions that are absolutely unique to humans. Furthermore, we still have not identified the genetic and neurobiological mechanisms, nor do we know precisely the circuits in the brain that function abnormally in mood and psychotic disorders. Consequently, the pharmacological treatments used are mostly variations on a theme that was started more than 50 years ago. Thus, progress in novel drug development with improved therapeutic efficacy would benefit greatly from improved animal models. Here, we review the available animal models of depression and schizophrenia and focus on the way that they respond to various types of potential candidate molecules, such as novel antidepressant or antipsychotic drugs, as an index of predictive validity. We conclude that the generation of convincing and useful animal models of mental illnesses could be a bridge to success in drug discovery.  相似文献   

6.
Antidepressants are used since 40 years. All presently used antidepressants have a slow onset of action and do not improve all patients; thus, there is an absolute need for new antidepressants. A variety of animal models, often based upon the monoaminergic theory of depressive disorders, has been used to screen the current antidepressants. In fact, the main focus of most of these animal models has been to predict the antidepressant potential i.e. to establish predictive validity. However, the evaluation of such animal models should also consider face validity, i.e. how closely the model resembles the human condition, and this should help to identify innovating medicines. Antidepressants, when taken by a healthy person, induce nothing more than side effects, unrelated to an action on mood, whereas they alleviate depressive symptomatology in depressed patients. We have speculated that genetically selected animal models would be closer to the human clinical situation than models based on standard laboratory strains. We have depicted here that marked differences exist between strains of mice in the amount of immobility i.e. "spontaneous helplessness" observed in the tail suspension test, a method used to screen potential antidepressants. We have studied the behavioural characteristics of mice selectively bred for spontaneous high or low immobility scores in the tail suspension test. Hopefully, these selectively bred lines will provide a novel approach to investigate behavioural, neurochemical and neuroendocrine correlates of antidepressant action.  相似文献   

7.
神经元再生:抑郁症治疗的新策略   总被引:11,自引:0,他引:11  
成年哺乳动物一生中,海马等脑区神经元是可以再生的,而海马脑区神经元再生的减少和增多分别是抑郁症发生和恢复的重要因素。如果神经元再生过程被抑制,在抑郁症的动物模型上抗抑郁剂将会失去其行为学效应。长期给予不同种类的抗抑郁剂可以显著地促进动物海马神经元再生。随着对神经元再生调节机制研究的不断深入,为进一步探讨抑郁症的发生机制,以及发展新型抗抑郁治疗药物提供了新的思路与视角。  相似文献   

8.

Background

There is an increased risk for depressive symptoms and affective disorders in individuals who experience drastic drops or fluctuations of gonadal hormones. Moreover, clinical studies indicate that estrogens have the potential to be effective in treating depression.

Scope of the review

Possible underlying mechanisms for the antidepressant activity of estrogens are reviewed and discussed.

Major conclusions

Estrogens exert their antidepressant activity via a multimodal mechanism of action by regulating several pathways and functions associated with antidepressive effects. Estrogens increase serotonergic activity by regulating the synthesis and degradation of serotonin, as well as spontaneous firing of the serotonergic neurons in the raphe nuclei. Both pre- and postsynaptic serotonin receptors are shown to be regulated by estrogens. In addition, estrogens are neurotrophic and promote neuroplasticity and neurogenesis. Similar effects are also observed after treatment with current antidepressant therapies. However in stark contrast to current therapies which must be administered chronically to produce an effect, the responses to estrogens are often observed after a single dose. Many of these estrogenic effects, including antidepressant and anxiolytic responses in behavioral models in rodents, appear to be mediated via the estrogen receptor β subtype.

General significance

The rapid onset of action combined with the multifactorial mechanism of action of estrogens indicates that estrogen treatment could complement currently available therapies for depression. Considering safety aspects, selective estrogen receptor β agonists would probably be the optimal estrogenic therapy.  相似文献   

9.
Objective: To test the hypothesis that major depression predicts an increase in long‐term body weight variability (BWV). Research Methods and Procedures: This was a prospective community‐based single‐age cohort study of young adults (N = 591) followed between the ages of 19 and 40. Following initial screening, information was derived from six subsequent semistructured diagnostic interviews conducted by mental health professionals. Major depression was diagnosed on the basis of DSM criteria. BWV was defined as the root mean square error of a regression line fitted to each individual's BMI values over time. Multiple regression analysis was used to test the association between major depression and BWV while controlling for potentially confounding variables including antidepressant treatment, eating disorder symptoms, and physical activity. We used random effects models to determine the temporal relationship between repeated measures of major depression and body weight change. Results: A highly significant positive association between major depression and BWV was found, whereas major depression was not associated with BMI level or BMI trend. Depression severity showed a dose‐response‐type relationship with the magnitude of BWV. After controlling for potentially confounding variables including antidepressant use, eating disorder symptoms, smoking, and physical activity, major depression remained a significant predictor of BWV (β= 0.13, p < 0.001). Longitudinal analysis revealed a unidirectional association between major depression and a later increase in body weight change rate irrespective of antidepressant medication. Discussion: Results from this study implicate depression as an important risk factor for increased BWV. Given increasing evidence for a link between major depression and both diabetes and cardiovascular disease, current results encourage further research on depression, BWV, and negative health outcomes.  相似文献   

10.
Major depression is becoming one of the most prevalent forms of psychiatric disorders. However, the mechanisms of major depression are still not well-understood. Most antidepressants are only effective in some patients and produce some serious side effects. Animal models of depression are therefore essential to unravel the mechanisms of depression and to develop novel therapeutic strategies. Our previous studies showed that Abelson helper integration site-1 (Ahi1) deficiency causes depression-like behaviors in mice. In this study, we characterized the biochemical and behavioral changes in Ahi1 knockout (KO) mice. In Ahi1 KO mice, neurotransmitters including serotonin and dopamine were significantly decreased in different brain regions. However, glutamate and GABA levels were not affected by Ahi1 deficiency. The antidepressant imipramine attenuated depressive behaviors and partially restored brain serotonin level in Ahi1 KO mice. Our findings suggest that Ahi1 KO mice can be used for studying the mechanisms of depression and screening therapeutic targets.  相似文献   

11.
A. Radtchenko  B. Granger  Q. Debray 《PSN》2009,7(3-4):145-151
Major depressive disorder is characterized by structural and neurochemical changes in limbic structures, including the hippocampus that regulates mood and cognitive functions. Hippocampal atrophy is observed in patients with depression: structural changes in the hippocampus associated with depression include dendritic atrophy, decreased adult neurogenesis and reduced volume. Impairment of neuroplasticity in the hippocampus, amygdala and cortex is hypothesized to be the mechanism by which cognitive function, episodic verbal memory and emotions are altered in depression. Chronic stress exposure and depression leads to hippocampal atrophy and cell loss as well as to decreased expression of neurotrophic growth factors. All types of antidepressant drugs reverse or block the effects of stress. Chronic antidepressant administration upregulates neurogenesis and neuroplasticity in the adult hippocampus and these cellular responses are required for the effects of antidepressants in animal models of depression.  相似文献   

12.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

13.
Interest has recently surged in the use of social stress models, especially social defeat. Such interest lies both in the recognition that stressors of social origin play a major role in human psychopathologies and in the acknowledgement that natural and hence ethologically-based stress models have important translational value. The use of the most recent technology has allowed the recognition of the mechanisms through which social defeat might have enduring psychoneuroendocrine effects, especially social avoidance and anhedonia, two behaviours relevant to human depression. In view of the sensitivity of these behavioural outcomes to repeated antidepressant treatments, the social defeat model has been proposed as a possible animal model of depression. The present survey is aimed at examining the limits of such an interpretation and focuses on methodological aspects and on the relevance of social defeat to the study of anxiety-related pathologies.  相似文献   

14.
Depression is one of the most prevalent and debilitating of the psychiatric disorders. Studies have shown that cognitive therapy is as efficacious as antidepressant medication at treating depression, and it seems to reduce the risk of relapse even after its discontinuation. Cognitive therapy and antidepressant medication probably engage some similar neural mechanisms, as well as mechanisms that are distinctive to each. A precise specification of these mechanisms might one day be used to guide treatment selection and improve outcomes.  相似文献   

15.
The underlying circuit imbalance in major depression remains unknown and current therapies remain inadequate for a large group of patients. Discovery of the rapid antidepressant effects of ketamine - an NMDA receptor (NMDAR) antagonist – has linked the glutamatergic system to depression. Interestingly, dysfunction in the inhibitory GABAergic system has also been proposed to underlie depression and deficits linked to GABAergic neurons have been found with human imaging and in post-mortem material from depressed patients. Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit function through perisomatic inhibition and their activity is NMDAR-dependent, providing a possible link between NMDAR and the inhibitory system in the antidepressant effect of ketamine. We have therefore investigated the role of the NMDAR-dependent activity of PV interneurons for the development of depression-like behavior as well as for the response to rapid antidepressant effects of NMDAR antagonists. We used mutant mice lacking NMDA neurotransmission specifically in PV neurons (PV-Cre+/NR1f/f) and analyzed depression-like behavior and anhedonia. To study the acute and sustained effects of a single NMDAR antagonist administration, we established a behavioral paradigm of repeated exposure to forced swimming test (FST). We did not observe altered behavioral responses in the repeated FST or in a sucrose preference test in mutant mice. In addition, the behavioral response to administration of NMDAR antagonists was not significantly altered in mutant PV-Cre+/NR1f/f mice. Our results show that NMDA-dependent neurotransmission in PV neurons is not necessary to regulate depression-like behaviors, and in addition that NMDARs on PV neurons are not a direct target for the NMDAR-induced antidepressant effects of ketamine and MK801.  相似文献   

16.
The way in which emotion is represented and processed in the human brain is an expanding area of research and has key implications for how we understand and potentially treat affective disorders such as depression. Characterizing the effects of pharmacological manipulations of key neurotransmitter systems can also help reveal the neurochemical underpinnings of emotional processing and how common antidepressant drugs may work in the treatment of depression and anxiety. This approach has revealed that depression is associated with both neural and behavioural biases towards negative over positive stimuli. Evidence from pharmacological challenge studies suggests that antidepressant treatment acts to normalize these biases early on in treatment, resulting in patients experiencing the world in a more positive way, improving their mood over time. This model is supported by evidence from both pharmacological and non-pharmacological interventions. The unique perspective on antidepressant treatment offered by this approach provides some insights into individual response to treatment, as well as novel approaches to drug development.  相似文献   

17.
There are now many potentials for the development of more effective, better tolerated, and more rapidly acting antidepressants acting in association and/or beyond the monoamine hypothesis. One of these possibilities is the development of antidepressant drugs with melatonin agonist property. This holds much promise since various affective disorders, including depression, are characterized by abnormal patterns of circadian rhythms. In line with this, the melatoninergic agonist properties of agomelatine, an antidepressant with proven clinical efficacy, may represent a new concept for the treatment of depression. By way of behavioral studies in rodents, it has been shown that administration of agomelatine can mimic the action of melatonin in the synchronization of circadian rhythm patterns. Interest in agomelatine has increased in recent times due to its prospective use as a novel antidepressant agent, as demonstrated in a number of animal studies using well-validated animal models of depression (including the forced swimming test, the learned helplessness, the chronic mild stress). Interestingly, the melatoninergic agonist property of agomelatine may not, alone, be sufficient to sustain its clear antidepressant-like activity. Recent results from receptor binding and in vivo studies gave support to the notion that agomelatine's effects are also mediated via its function as a competitive antagonist at the 5-HT2C receptor. Finally, thanks to its absence of binding with a broad range of receptors and enzymes, agomelatine is particularly safe and devoid of all the deleterious effects reported with tricyclics and SSRIs.  相似文献   

18.
A major challenge in managing depression is that antidepressant drugs take a long time to exert their therapeutic effects. For the development of faster-acting treatments, it is crucial to get an improved understanding of the molecular mechanisms underlying antidepressant mode of action. Here, we used a novel mass spectrometry-based workflow to investigate how antidepressant treatment affects brain protein turnover at single-cell and subcellular resolution. We combined stable isotope metabolic labeling, quantitative Tandem Mass Spectrometry (qTMS) and Multi-isotope Imaging Mass Spectrometry (MIMS) to simultaneously quantify and image protein synthesis and turnover in hippocampi of mice treated with the antidepressant paroxetine. We identified changes in turnover of individual hippocampal proteins that reveal altered metabolism-mitochondrial processes and report on subregion-specific turnover patterns upon paroxetine treatment. This workflow can be used to investigate brain protein turnover changes in vivo upon pharmacological interventions at a resolution and precision that has not been possible with other methods to date. Our results reveal acute paroxetine effects on brain protein turnover and shed light on antidepressant mode of action.  相似文献   

19.
《Journal of Physiology》2000,94(2):99-104
Various antidepressants have antiulcer activity. Likewise, the models currently used in ulcers and depression disorders research have a considerable degree of similarity. Therefore, the possibility that depression disorders could be effectively influenced by a primary antiulcer agent with a cyto/organoprotective activity, such as the novel stomach pentadecapeptide BPC 157, was investigated in two rat depression assays. First, a forced swimming test (a Porsolt's procedure) was used. As a more severe procedure, chronic unpredictable stress (after 5 d of unpredictable stress protocol, once daily drug application during stress procedure, open field-immobility test assessment at fourth or sixth day of medication) was used. In a forced swimming test, a reduction of the immobility time in BPC 157 (10 μg, 10 ng.kg–1 i.p.) treated rats corresponds to the activity of the 15 mg or 40 mg (i.p.) of conventional antidepressants, imipramine or nialamide, respectively, given according to the original Porsolt's protocol. In chronic unpredictable stress procedure, particular aggravation of experimental conditions markedly affected the conventional antidepressant activity, whereas BPC 157 effectiveness was continuously present. The effect of daily imipramine (30 mg) medication could be seen only after a more prolonged period, but not after a shorter period (i.e., 4-d protocol). In these conditions, no delay in the effectiveness was noted in BPC 157 medication and a reduction of the immobility of chronically stressed rats was noted after both 4 and 6 d of BPC 157 (10 μg, 10 ng) medication.  相似文献   

20.
Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression‐like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit‐targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression‐related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号