首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we investigate the anti-cancer activity and mechanism of caudatin, the C-21 steroidal glycosides, on human hepatoma cell line HepG2. The MTT assay and flow cytometry were used to evaluate HepG2 cell proliferation and cell cycle. Annexin-V/PI and DAPI staining were used to investigate cell apoptosis. Western blotting analysis was used to evaluate the expression levels of proteins. It is found that caudatin inhibits HepG2 cell growth and induces of G0/G1 phase arrest in a dose dependent manner, which is associated with a decreased in the expression of cyclinD1 and increased the levels of p21 and p53. HepG2 cells dealing with caudatin showed typical characteristics of apoptosis. Western blotting analysis indicated that the levels of Bcl-2 were down-regulated after caudatin treatment, whereas the expression of Bax was up-regulated. Furthermore, caudatin-induced apoptosis was accompanied by activation of caspase-3, -9, and poly(ADP-Ribose) Polymerase (PARP). Treatment with caudatin also induced phosphorylation of extracellular-signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). These results demonstrate that caudatin inhibits cell proliferation via DNA synthesis reduction and induces caspase-dependent apoptosis in HepG2 cell. Activation of ERK and JNK may be involved in caudatin-induced hepatoma cell apoptosis.  相似文献   

2.
3.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

4.
BACKGROUND: Human colon cancers have a high frequency of p53 mutations, and cancer cells expressing mutant p53 tend to be resistant to current chemo- and radiation therapy. It is thus important to find therapeutic agents that can inhibit colon cancer cells with altered p53 status. beta-Lapachone, a novel topoisomerase inhibitor, has been shown to induce cell death in human promyelocytic leukemia and prostate cancer cells through a p53-independent pathway. Here we examined the effects of beta-lapachone on human colon cancer cells. MATERIALS AND METHODS: Several human colon cancer cell lines, SW480, SW620, and DLD1, with mutant or defective p53, were used. The antiproliferative effects of beta-lapachone were assessed by colony formation assays, cell cycle analysis, and apoptosis analysis, including annexin V staining and DNA laddering analysis. The effects on cell cycle and apoptosis regulatory proteins were examined by immunoblotting. RESULTS: All three cell lines, SW480, SW620, and DLD1, were sensitive to beta-lapachone, with an IC(50) of 2 to 3 microM in colony formation assays, a finding similar to that previously reported for prostate cancer cells. However, these cells were arrested in different stages of S phase. At 24 hr post-treatment, beta-lapachone induced S-, late S/G2-, and early S-phase arrest in SW480, SW620, and DLD1 cells, respectively. The cell cycle alterations induced by beta-lapachone were congruous with changes in cell cycle regulatory proteins such as cyclin A, cyclin B1, cdc2, and cyclin D1. Moreover, beta-lapachone induced apoptosis, as demonstrated by annexin V staining, flow cytometric analysis of DNA content, and DNA laddering analysis. Furthermore, down-regulation of mutant p53 and induction of p27 in SW480 cells, and induction of pro-apoptotic protein Bax in DLD1 cells may be pertinent to the anti-proliferative and apoptotic effects of beta-lapachone on these cells. CONCLUSIONS: beta-Lapachone induced cell cycle arrest and apoptosis in human colon cancer cells through a p53-independent pathway. For human colon cancers, which often contain p53 mutations, beta-lapachone may prove to be a promising anticancer agent that can target cancer cells, especially those with mutant p53.  相似文献   

5.
Among the seven natural resveratrol analogs separated and identified from Pholidota yunnanensis R(OLFE), we found phoyunbene B (PYB, trans-3,4'-dihydroxy-2',3',5-trimethoxystilbene) was more effective in inhibiting the growth of HepG2 hepatocellular carcinoma cells than resveratrol. The inhibitory effect of PYB in HepG2 cells was due to its induction of G2/M cell cycle arrest and apoptosis. Induction of G2/M phase cell cycle arrest by PYB was associated with its up-regulation of Cyclin B1, while its induction of apoptosis was accompanied with its down-regulation of Bcl-2 and up-regulation of Bax. Our in vitro invasion/migration assays also showed that PYB could inhibit the invasion of hepatocellular carcinoma cells.  相似文献   

6.
7.
Our previous studies showed that renal proximal tubular cells (RPTC) express Ca(2+)-independent phospholipase A(2)gamma (iPLA(2)gamma) in endoplasmic reticulum (ER) and mitochondria and that iPLA(2)gamma prevents and/or repairs lipid peroxidation induced by oxidative stress. Our present studies determined the importance of iPLA(2)gamma in mitochondrial and cell function using an iPLA(2)gamma-specific small hairpin ribonucleic acid (shRNA) adenovirus. iPLA(2)gamma expression and activity were decreased in the ER by 24 h and in the mitochondria by 48 h compared with scrambled shRNA adenovirus-treated cells. Lipid peroxidation was elevated by 2-fold at 24 h and remained elevated through 72 h in cells with decreased iPLA(2)gamma. Using electrospray ionization-mass spectrometry, primarily phosphatidylcholines and phosphatidylethanolamines were increased in iPLA(2)gamma-shRNA-treated cells. At 48 h after exposure to the iPLA(2)gamma shRNA, uncoupled oxygen consumption was inhibited by 25% and apoptosis was observed at 72 and 96 h. RPTC with decreased iPLA(2)gamma expression underwent apoptosis when exposed to a nonlethal concentration of the oxidant tert-butyl hydroperoxide (TBHP). Exposure of control cells to a nonlethal concentration of TBHP induced iPLA(2)gamma expression in RPTC. These results suggest that iPLA(2)gamma is required for the prevention and repair of basal lipid peroxidation and the maintenance of mitochondrial function and viability, providing further evidence for a cytoprotective role for iPLA(2)gamma from oxidative stress.  相似文献   

8.
Xiao Z  Yang M  Lv Q  Wang W  Deng M  Liu X  He Q  Chen X  Chen M  Fang L  Xie X  Hu J 《Journal of cellular biochemistry》2011,112(9):2257-2265
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.  相似文献   

9.
Rhodium (II) complex with 2-benzoylpyridine (Rh(L)2Cl2) is a new, synthetic, active metal-complex, which is produced by the reaction of 2-benzoylpyridine (L) with rhodium chloride hydrate (RhCl3·nH2O). The crystal structure was determined by X-ray diffraction which is mono-nuclear. In order to explore the biological properties of the novel complex, a series of studies were performed. The results showed that Rh(L)2Cl2 had the anti-tumor activity in HepG2 and other cell lines and has been shown to induce G1 cell cycle arrest and apoptosis in HepG2 cells. The anti-cancer effect of Rh(L)2Cl2 is regulated by increased expression of caspase-3 and PARP via the mitochondrial and the death receptor pathways. Bcl-2 family proteins might play an important role in the Rh(L)2Cl2-induced changes in these two pathways. Further studies indicated that Rh(L)2Cl2 increased the level of reactive oxygen species (ROS), but that Rh(L)2Cl2-induced apoptosis was ROS-independent. In conclusion, Rh(L)2Cl2 is a potential new anti-tumor drug, which induces HepG2 cell death via the mitochondrial and death receptor pathways and has no obvious toxicity to normal liver cell.  相似文献   

10.
Ho PJ  Chou CK  Kuo YH  Tu LC  Yeh SF 《Life sciences》2007,80(5):493-503
Taiwanin A, a lignan isolated from Taiwania cryptomerioides Hayata, has previously been reported to have cytotoxicity against human tumor cells, but the mechanisms are unclear. In this study, we examined the molecular mechanism of cell death of human hepatocellular carcinoma HepG2 cells induced by Taiwanin A. Taiwanin A has been found to induce cell cycle arrest at G2/M phase as well as caspase-3-dependent apoptosis within 24 h. We performed both in vitro turbidity assay and immunofluorescence staining of tubulin to show that Taiwanin A can inhibit microtubule assembly. Moreover, the tumor suppressor protein p53 in HepG2 cells was activated by Taiwanin A within 12 h. Inhibition of p53 by either pifithrin-alpha or by short hairpin RNA which blocks p53 expression attenuates Taiwanin A cytotoxicity. Our results demonstrate that Taiwanin A can act as a new class of microtubule damaging agent, arresting cell cycle progression at mitotic phase and inducing apoptosis through the activation of p53.  相似文献   

11.
12.
Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells   总被引:3,自引:0,他引:3  
Kuo PL  Lin CC 《Life sciences》2003,73(2):243-252
The effects of tetrandrine in the human hepatoblastoma G2 (Hep G2) cell line were investigated in this study. The results showed that tetrandrine not only inhibited Hep G2 growth but also induced apoptosis and blocked cell cycle progression in the G1 phase. ELISA assay demonstrated that tetrandrine significantly increased the expression of p53 and p21/WAF1 protein, which caused cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by tetrandrine. Taken together, p53 and Fas/FasL apoptotic system possibly participated in the antiproliferative activity of tetrandrine in Hep G2 cells.  相似文献   

13.
14.
The present study aimed to examine the effect of FTY720, a new immunosuppressive agent, on the proliferation and apoptosis of glomerular mesangial cells (GMC), and investigate the underlying mechanisms. Cultured rat GMC were treated by FTY720, and the cell viability, apoptosis and cell cycle progression were examined. Furthermore, cell cycle related gene expression profile was analyzed by cDNA microarray, and the protein expression of cell cycle related genes as well as Bax and Bcl-2 were examined by Western blot. The results showed that FTY720 inhibited GMC proliferation and induced apoptosis of GMC in a dose- and time-dependent manner, and induced G(1) phase cell cycle arrest in GMC in a dose-dependent manner as well. cDNA microarray analysis revealed that FTY720 regulated the expression of cell cycle-related gene. Western blot analysis showed that FTY720 induced the downregulation of cyclin D1, cyclin E, CDK2, CDK4, Bcl-2 and E2F1 and the upregulation of Kip1/p27, Cip1/p21, Bax and Rb in GMC in a dose-dependent manner. These results demonstrated that FTY720 could inhibit the proliferation of GMC through inducing cell cycle arrest and apoptosis, probably via the regulation of the expression of cell cycle-related genes and Bax/Bcl-2.  相似文献   

15.
目的:探讨组蛋白去乙酰化酶抑制剂曲古霉素A(TSA)对人膀胱癌T24细胞周期和凋亡的影响。方法:以不同剂量TSA(0.1μM,0.3μM和1μM)处理T24细胞。采用MTT法检测细胞存活率,AnnexinV-PI染色检测细胞凋亡,流式细胞仪检测caspase-3活性,Western blot法检测P21蛋白表达。结果:TSA剂量依赖性降低膀胱癌细胞存活率,促进细胞凋亡,表现为AnnexinV阳性细胞明显增多,同时活化的caspase-3水平增高。TSA还可通过诱导膀胱癌细胞周期阻滞于G2/M期抑制细胞生长,且呈剂量依赖性。结论:TSA通过促进caspase-3激活诱导膀胱癌细胞凋亡,同时诱导细胞阻滞于G2/M期。  相似文献   

16.
17.
The cytotoxicity and antioxidant activity on human hepa toma cell line HepG2 of three flavonoids homogenous com pounds from tartary buckwheat seeds and bran, namely quercetin, isoquercetin, and rutin, were investigated. The total antioxidant competency detection results indicated that the antioxidant capacity of quercetin was the strongest in a biological response system. A [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide] assay showed that quercetin exhibited the strongest cytotoxic effects against the HepG2 cell line. Flow cytometric analysis indicated that quercetin significantly increased the production of reactive oxygen species, and led to the G2/M phase arrest accom panied by an increase of apoptotic cell death after 48 h of incubation. Quercetininduced cell apoptosis was shown to involve p53 and p21 upregulation, Cyclin D1, Cdk2, and Cdk7 downregulation. These results suggested that the in duction of G2/M arrest, apoptosis, and cell death by quer cetin may associate with increased expression of p53 and p21, decrease of Cyclin D1, Cdk2, and Cdk7 levels, and generation of reactive oxygen species in cells. This study will help to better understand and fully utilize medicinal resources of plant flavonoids.  相似文献   

18.
AMP-activated protein kinase (AMPK) performs a pivotal function in energy homeostasis via the monitoring of intracellular energy status. Once activated under the various metabolic stress conditions, AMPK regulates a multitude of metabolic pathways to balance cellular energy. In addition, AMPK also induces cell cycle arrest or apoptosis through several tumor suppressors including LKB1, TSC2, and p53. LKB1 is a direct upstream kinase of AMPK, while TSC2 and p53 are direct substrates of AMPK. Therefore, it is expected that activators of AMPK signal pathway might be useful for treatment or prevention of cancer. In the present study, we report that cryptotanshinone, a natural compound isolated from Salvia miltiorrhiza, robustly activated AMPK signaling pathway, including LKB1, p53, TSC2, thereby leading to suppression of mTORC1 in a number of LKB1-expressing cancer cells including HepG2 human hepatoma, but not in LKB1-deficient cancer cells. Cryptotanshinone induced HepG2 cell cycle arrest at the G1 phase in an AMPK-dependent manner, and a portion of cells underwent apoptosis as a result of long-term treatment. It also induced autophagic HepG2 cell death in an AMPK-dependent manner. Cryptotanshinone significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model, with a substantial activation of AMPK signal pathways. Collectively, we demonstrate for the first time that cryptotanshinone harbors the therapeutic potential for the treatment of cancer through AMPK activation.  相似文献   

19.
20.
The X-linked inhibitor of apoptosis (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family of endogenous caspase inhibitors, blocks the initiation and execution phases of the apoptotic cascade. As such, XIAP represents an attractive target for treating apoptosis-resistant forms of cancer. Here, we demonstrate that treatment with the membrane-permeable zinc chelator, N,N,N',N',-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces a rapid depletion of XIAP at the post-translational level in human PC-3 prostate cancer cells and several non-prostate cell lines. The depletion of XIAP is selective, as TPEN has no effect on the expression of other zinc-binding members of the IAP family, including cIAP1, cIAP2 and survivin. The downregulation of XIAP in TPEN-treated cells occurs via proteasome- and caspase-independent mechanisms and is completely prevented by the serine protease inhibitor, Pefabloc. Finally, our studies demonstrate that TPEN promotes activation of caspases-3 and -9 and sensitizes PC-3 prostate cancer cells to TRAIL-mediated apoptosis. Taken together, our findings indicate that zinc-chelating agents may be used to sensitize malignant cells to established cytotoxic agents via downregulation of XIAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号