首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work examines the effect of membrane lipid composition on activation of extracellular signal-regulated protein kinases (ERK) and cell death following oxidative stress. When subjected to 50 microM docosahexaenoic acid (DHA, 22 : 6 n-3), cellular phospholipids of OLN 93 cells, a clonal line of oligodendroglia origin low in DHA, were enriched with this polyunsaturated fatty acid. In the presence of 1 mM N,N-dimethylethanolamine (dEa) a new phospholipid species analog was formed in lieu of phosphatidylcholine. Exposure of DHA-enriched cells to 0.5 mM H2O2, caused sustained activation of ERK up to 24 h. At this time massive apoptotic cell death was demonstrated by ladder and TUNEL techniques. H2O2-induced stress applied to dEa or DHA/dEa co-supplemented cells showed only a transient ERK activation and no cell death after 24 h. Moreover, while ERK was rapidly translocated into the nucleus in DHA-enriched cells, dEa supplements completely blocked ERK nuclear translocation. This study suggests that H2O2-induced apoptotic cell death is associated with prolonged ERK activation and nuclear translocation in DHA-enriched OLN 93 cells, while both phenomena are prevented by dEa supplements. Thus, the membrane lipid composition ultimately modulates ERK activation and translocation and therefore can promote or prevent apoptotic cell death.  相似文献   

2.
The consequences of H(2)O(2)/Fe(2+)-induced oxidative stress on translocation of ethanolamine phosphoglyceride (EPG) and serine phosphoglyceride (SPG) were studied in an oligodendroglia-like cell line (OLN 93) following 3 days of supplementation with 0.1 mM docosahexaenoic acid (DHA) and a series of polar head group precursors, including N-monomethyl- and N,N-dimethylethanolamine at millimolar concentrations. Added DHA was predominantly esterified in EPG species and those cells enriched in DHA showed enhanced sensitivity to oxidative stress and eventually died by apoptosis. Co-supplements with ethanolamine and DHA resulted in a rapid, but transient, EPG translocation with a maximum at 30 min following stress, as characterized by a trinitrobenzenesulfonic acid reagent. There was no significant translocation of SPG as evidenced by annexin V binding. Unlike SPG, which is usually irreversibly translocated to subserve as a tag for phagocytosis, EPG acted as a signaling molecule with biphasic kinetic characteristics. N-Monomethyl- and N,N-dimethylethanolamine supplements reduced EPG synthesis, prevented its externalization and rescued cells from apoptotic death. Following stress, the fatty acid profile of the externalized EPG showed marked losses in polyunsaturated fatty acids and aldehydes compared with the remaining intracellular EPG. Prevention of EPG species selective translocation to the outer membrane leaflet by altering phospholipid asymmetry may be important in the mechanism of rescue from cell death.  相似文献   

3.
The effect of docosahexaenoic acid (DHA; 22:6 n–3) on Fe2+-mediated and/or H2O2-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe2+-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells. Special issue dedicated to Dr. Moussa Youdim. Equal scientific input of ES and AB.  相似文献   

4.
Gadolinium (Gd) compounds have important applications as MRI contrast and potential anticancer agents. The present study investigated the mechanisms of the proapoptotic effect of gadolinium chloride (GdCl3) on hepatoblastoma cell line (Hep G2) tumor cells. The experimental results indicated that GdCl3 induced apoptosis of Hep G2 at high concentration and with long time incubation; however, unlike the actions on normal cell lines, GdCl3 did not cause any oxidative stress on tumor cells. Cytochrome c (Cyt c) and apoptosis inducing factor release, Bax translocation, collapse of mitochondria membrane potential, caspase 3 and 8 activation, and Bid cleavage were observed along with a sustained activation of extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK). Addition of ERK and JNK inhibitor attenuated the effect of GdCl3 induced apoptosis and Cyt c release. All the results suggested a novel mechanism that GdCl3 induced Hep G2 cell death through intrinsic and external death pathways without significant elevation of reactive oxygen species generation. The present work provided new insight to understand the mechanisms of the biological effects of GdCl3 and implications for the development of anticancer Gd agents.  相似文献   

5.
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.  相似文献   

6.
In order to study the nature of aging-dependent apoptosis resistance, we compared the activation pattern of mitogen-activated protein kinases (MAPK) in response to three different stress modalities: hydrogen peroxide (H2O2), staurosporine, and thapsigargin. We observed the agonist-specific activation pattern of MAP kinases in human diploid fibroblasts (HDFs). When young HDFs were treated with PD98059, a specific inhibitor of extracellular signal-regulated kinase (ERK), H2O2-induced apoptosis was blocked, whereas staurosporine-induced apoptosis was inhibited by treatment with SB203580, a specific inhibitor of p38. In addition, the levels of anti-apoptotic protein Bcl-2 (B-cell lymphoma protein-2) were restored by PD98059 or SB239063 in cells treated with H2O2 or staurosporine, respectively. We also found that inhibition of the nuclear import of p-Erk and p-p38 using wheat germ agglutinin induced apoptosis resistance in young HDF cells in response to H2O2 or staurosporine. These data indicate a potential role of the nuclear translocation of apoptotic signals in the induction of apoptosis. Moreover, the nuclear translocation of activated ERK1/2 and p38 in response to H2O2 or staurosporine was significantly compromised in senescent HDFs, compared with young cells. Taken together, we propose that the apoptosis resistance of senescent HDFs might be related to the defective nuclear translocation of stress-activated signals in an agonist-specific manner, which would imply the operation of an aging-dependent functional nucleo-cytoplasmic trafficking barrier.  相似文献   

7.
Dysfunction of the UPS (ubiquitin—proteasome system) has been implicated in dopaminergic neuronal death in PD (Parkinson's disease). Recent studies suggest that unregulated cell cycle events play a key role in neuronal death. In this study, the effects of UPS dysfunction on cell cycle events in neuronal differentiated PC12 cells were analysed using a specific inhibitor of proteasome, lactacystin. Lactacystin induced apoptosis, G2/M cell cycle arrest and sustained the phosphorylation of the pRB (retinoblastoma protein), the key molecular process of G1/S transition, in neuronal PC12 cells. Furthermore, inhibition of cell cycle progression protected against lactacystin‐induced cell apoptosis. Finally, we determined that lactacystin activated the ERK signalling pathway. Inhibition of ERK1/2 activation by MEK‐1 inhibitor PD98059 decreased cell cycle aberrant and prevented apoptosis induced by lactacystin. These results indicate that aberrant cell cycle events contribute to apoptotic death induced by UPS dysfunction.  相似文献   

8.
Interferon gamma (IFNγ) has been demonstrated to inhibit tumor growth in vivo as well as proliferation of multiple types of cultured transformed cells. In this study, we showed that IFNγ promoted progressive death in A431 cells, overexpressing EGF receptor (EGFR). Based on the data provided by evaluating cell morphology, MTT assay, FACS analysis, and cleaved caspase-3 staining we concluded that the major cause of IFNγ-induced A431 cell growth inhibition was not cell cycle arrest, but apoptosis. We investigated a role for the EGFR and ERK1/2 MAPK signaling pathways in IFNγ-induced apoptosis of A431 cells. IFNγ-induced cell death was accompanied by both an increase of the ERK1/2 MAPK activation and a simultaneous reduction of the EGFR activation. Activation of ERK1/2 was crucial for IFNγ-induced cell death because MEK1/2 inhibitors, PD0325901 and U0126 efficiently protected cells from apoptosis by suppressing caspase-3 activation. Even though EGFR tyrosine kinase inhibitor AG1478 also rescued A431 cells from IFNγ-induced apoptosis, unlike MEK1/2 inhibitors, it initiated G1 arrest. Together, these results suggest that sustained inhibition of both EGFR and ERK1/2 leads to significant protection of the cells from IFNγ-induced apoptosis, indicating important roles for the EGFR tyrosine kinase and ERK1/2 MAP-kinases in regulating A431 cell death.  相似文献   

9.
Taxanes can induce drug resistance by increasing signaling pathways such as PI3K/Akt and ERK, which promote survival and cell growth in human cancer cells. We have previously shown that long chain n-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA, 22:6n-3) decrease resistance of experimental mammary tumors to anticancer drugs. Our objective was to determine whether DHA could increase tumor sensitivity to docetaxel by down-regulating these survival pathways. In docetaxel-treated MDA-MB-231 cells, phosphorylated-ERK1/2 levels were increased by 60% in membrane and nuclear compartments, compared to untreated cells. Our data showed that ERK1/2 activation depended on PKC activation since: i) enzastaurin (a pan-PKC inhibitor) blocked docetaxel-induced ERK1/2 phosphorylation ii) docetaxel increased PKC activity by 30% and phosphatidic acid level by 1.6-fold iii) inhibition of PKCε and PKCδ by siRNA resulted in reduced phosphorylated ERK1/2 levels. In DHA-supplemented cells, docetaxel was unable to increase PKCε and δ levels in membrane and nuclear fractions, resulting in diminished ERK1/2 phosphorylation and increased docetaxel efficacy. Reduced membrane level of PKCε and PKCδ was associated with significant incorporation of DHA in all phospholipids, including phosphatidylcholine which is a major source of phosphatidic acid. Additionally, examination of the Akt pathway showed that DHA could repress docetaxel-induced Ser473Akt phosphorylation. In rat mammary tumors, dietary DHA supplementation during docetaxel chemotherapy repressed ERK and Akt survival pathways and in turn strongly improved taxane efficacy. The P-ERK level was negatively correlated with tumor regression. These findings are of potential clinical importance in treating chemotherapy-refractory cancer.  相似文献   

10.
The flavonoid, luteolin, has been shown to have anticancer activity in various cancer cells; however, the precise molecular mechanism of its action is not completely understood, and studies were conducted to find out how it induces apoptosis in breast cancer cells. Luteolin induced a reduction of viability in a dose- and time-dependent manner. The pro-apoptotic effect of luteolin was demonstrated by cell cycle measurement and Hoechst 3325 staining. Western blot analysis showed that luteolin activates ERK (extracellular-signal-regulated kinase) and p38. Pharmacological inhibition or knockdown of ERK and p38 protected against luteolin-induced cell death; however, the caspase-3-specific inhibitor had no effect. Immunocytochemical examination indicated that luteolin induced nuclear translocation of AIF (apoptosis-inducing factor), which was mediated by activation of ERK and p38. Transfection of a vector expressing the miRNA (microRNA) of AIF prevented luteolin-induced apoptosis. The data suggest that luteolin induces a caspase-dependent and -independent apoptosis involving AIF nuclear translocation mediated by activation of ERK and p38 in breast cancer cells.  相似文献   

11.
Park MT  Song MJ  Lee H  Oh ET  Choi BH  Jeong SY  Choi EK  Park HJ 《PloS one》2011,6(10):e25976

Background

β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap.

Methodology/Principal Findings

β-lap enhanced the effect of IR to cause clonogenic cells in NQO1+-MDA-MB-231 cells but not in NQO1-MDA-MB-231 cells. β-lap caused apoptosis only in NQO1+ cells and not in NQO1 cells and it markedly increased IR-induced apoptosis only in NQO1+ cells. Combined treatment of NQO1+ cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis.

Conclusions/Significance

β-lap causes NQO1-dependent radiosensitization of cancer cells. When NQO1+ cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis.  相似文献   

12.
Artemisinin, the active principle of the Chinese medicinal herb Artemisia annua, and its derivatives (i.e. dihydroartemisinin, DHA) were reported to exhibit anti-tumor activity both in vitro and in vivo. The purpose of the present study was to investigate the functional role of Mitogen-Activated Protein Kinase (MEK)/Extracellular signal-regulated protein Kinase (ERK) signaling cascade in dihydroartemisinin (DHA)-induced apoptosis in human leukemia cells in vitro and anti-leukemic activity in vivo. Human leukemia cells were treated with DHA in dose- and time-dependent manners, after which apoptosis, caspase activation, Mcl-1 expression, and cell signaling pathways were evaluated. Parallel studies were performed in AML and ALL primary human leukemia cells. In vivo anti-leukemic activity mediated by DHA was also investigated using U937 xenograft mouse model. Exposure of DHA resulted in a pronounced increase in apoptosis in both transformed and primary human leukemia cells but not in normal peripheral blood mononuclear cells. DHA-induced apoptosis was accompanied by caspase activation, cytochrome c release, Mcl-1 down-regulation, as well as MEK/ERK inactivation. Pretreatment with MEK inhibitor PD98059, which potentiated DHA-mediated MEK and ERK inactivation, intensified DHA-mediated apoptosis. Conversely, enforced expression of a constitutively active MEK1 attenuated DHA-induced apoptosis. Furthermore, DHA-mediated inhibition of tumor growth of mouse U937 xenograft was associated with induction of apoptosis and inactivation of ERK. The findings in the present study showed that DHA-induced apoptosis in human leukemia cells in vitro and exhibited an anti-leukemic activity in vivo through a process that involves MEK/ERK inactivation, Mcl-1 down-regulation, culminating in cytochrome c release and caspase activation.  相似文献   

13.
Apoptosis is a major cause of cell death in the nervous system. It plays a role in embryonic and early postnatal brain development and contributes to the pathology of neurodegenerative diseases. Here, we report that activation of the P2X7 nucleotide receptor (P2X7R) in rat primary cortical neurons (rPCNs) causes biochemical (i.e., caspase activation) and morphological (i.e., nuclear condensation and DNA fragmentation) changes characteristic of apoptotic cell death. Caspase-3 activation and DNA fragmentation in rPCNs induced by the P2X7R agonist BzATP were inhibited by the P2X7R antagonist oxidized ATP (oATP) or by pre-treatment of cells with P2X7R antisense oligonucleotide indicating a direct involvement of the P2X7R in nucleotide-induced neuronal cell death. Moreover, Z-DEVD-FMK, a specific and irreversible cell permeable inhibitor of caspase-3, prevented BzATP-induced apoptosis in rPCNs. In addition, a specific caspase-8 inhibitor, Ac-IETD-CHO, significantly attenuated BzATP-induced caspase-9 and caspase-3 activation, suggesting that P2X7R-mediated apoptosis in rPCNs occurs primarily through an intrinsic caspase-8/9/3 activation pathway. BzATP also induced the activation of C-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated kinases (ERK1/2) in rPCNs, and pharmacological inhibition of either JNK1 or ERK1/2 significantly reduced caspase activation by BzATP. Taken together, these data indicate that extracellular nucleotides mediate neuronal apoptosis through activation of P2X7Rs and their downstream signaling pathways involving JNK1, ERK and caspases 8/9/3.  相似文献   

14.
Poly(ADP-ribose) polymerase-1 (PARP-1) hyper-activation promotes cell death but the signaling events downstream of PARP-1 activation are not fully identified. To gain further information on the implication of PARP-1 activation and PAR synthesis on signaling pathways influencing cell death, we exposed HeLa cells to the DNA alkylating agent N-methyl-N′-methyl-nitro-N-nitrosoguanidine (MNNG). We found that massive PAR synthesis leads to down-regulation of ERK1/2 phosphorylation, Bax translocation to the mitochondria, release of cytochrome c and AIF and subsequently cell death. Inhibition of massive PAR synthesis following MNNG exposure with the PARP inhibitor PJ34 prevented those events leading to cell survival, whereas inhibition of ERK1/2 phosphorylation by inhibiting MEK counteracted the cytoprotective effect of PJ34. Together, our results provide evidence that PARP-1-induced cell death by MNNG exposure in HeLa cells is mediated in part through inhibition of the MEK/ERK signaling pathway and that inhibition of massive PAR synthesis by PJ34, which promotes sustained activation of ERK1/2, leads to cytoprotection.  相似文献   

15.
This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway.  相似文献   

16.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

17.
To investigate the mechanism by which nitric oxide (NO) induces cell death in colon cancer cells, we compared two types of colon cancer cells with different p53 status: HCT116 (p53 wild-type) cells and SW620 (p53-deficient) cells. We found that S-nitrosoglutathione (GSNO), the NO donor, induced apoptosis in both types of colon cancer cells. However, SW620 cells were much more susceptible than HCT116 cells to apoptotic death by NO. We investigated the role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 kinase on NO-induced apoptosis in both types of colon cancer cells. GSNO treatment effectively stimulated activation of the ERK1/2 and p38 kinase in both types of cells. In HCT116 cells, pretreatment with PD98059, an inhibitor of ERK1/2, or SB203580, an inhibitor of p38 kinase, had no marked effect on GSNO-induced apoptosis. However, in SW620 cells, SB203580 significantly reduced the NO-induced apoptosis, whereas PD098059 increases NO-induced apoptosis. Furthermore, we found evidence of cell cycle arrest of the G0/G1 phase in SW620 cells but not in HCT116 cells. Inhibition of ERK1/2 with PD098059, or of p38 kinase with SB203580, reduced the GSNO-induced cell cycle arrest of the G0/G1 phase in SW620 cells. We therefore conclude that NO-induced apoptosis in colon cancer cells is mediated by a p53-independent mechanism and that the pathways of ERK1/2 and p38 kinase are important in NO-induced apoptosis and in the cell cycle arrest of the G0/G1 phase.  相似文献   

18.
Pyrogallol (PG) is a polyphenol compound and a known O2 generator. We evaluated the effects of PG on the growth and apoptosis of human pulmonary adenocarcinoma Calu-6 cells. PG decreased the viability of Calu-6 cells in a dose- and time-dependent manner. The induction of apoptosis by PG was accompanied by the loss of mitochondrial membrane potential (ΔΨm), cytochrome c release from mitochondria and activation of caspase-3 and caspase-8. All tested caspase inhibitors, especially the pan-caspase inhibitor (Z-VAD), markedly rescued Calu-6 cells from PG-induced cell death. Rescue was accompanied by inhibition of caspase-3 activation and PARP cleavage. Treatment with Z-VAD also prevented the loss of mitochondrial membrane potential (ΔΨm). In conclusion, PG inhibits the growth of Calu-6 cells via caspase-dependent apoptosis.  相似文献   

19.
p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation.  相似文献   

20.
The extracellular signal-regulated kinases 1/2 (ERK1/2) are serine/threonine-selective protein kinases involved in proliferation and differentiation of cells, including thymocytes. The requirement of ERK1/2 for thymocyte differentiation and maturation has been well established; however, their role in regulating thymocyte survival and apoptosis has not been resolved.Here, we asked whether ERK1/2 affected thymocyte survival in vitro in response to apoptotic stimuli. The results show that phorbol 12-myristate 13-acetate (PMA) treatment (with or without ionomycin) and serum starvation (s/s) induced sustained ERK1/2 activation in murine thymocytes. Importantly, pharmacological treatment of thymocytes with the MEK inhibitor UO126 revealed that PMA-induced ERK1/2 activation was proapoptotic, whereas serum starvation-induced ERK1/2 activation inhibited apoptosis and promoted cell survival. While basal MEK activity was required for both s/s- and PMA-induced ERK1/2 activation, MEK activity increased only in response to PMA. The results show that the suppression of ERK1/2 phosphatases was responsible for s/s-induced sustained ERK1/2 activation. Unexpectedly, neither s/s-induced proapoptotic nor PMA-induced anti-apoptotic functions of ERK1/2 depended on the Bcl-2 family phosphoprotein BimEL, which was previously implicated in thymocyte apoptosis. Lastly, etoposide treatment of immature thymocytes induced both p53 and ERK1/2 activation, but ERK1/2 activity did not affect the phosphorylation and stabilization of p53. Thus, ERK1/2 has a dual role in promoting cell survival and cell death in thymocytes in the context of different stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号