共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sylvia Verbanck Yannick Kerckx Daniel Schuermans Walter Vincken Manuel Paiva Alain Van Muylem 《Journal of applied physiology》2008,104(4):925-930
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of airways at various depths of the lung model. In 20 normal subjects, histamine induced a 26 +/- 15(SD)% Fe(NO,50) decrease, a 9 +/- 6% forced expiratory volume in 1 s (FEV(1)) decrease, a 19 +/- 9% mean forced midexpiratory flow between 25% and 75% forced vital capacity (FEF(25-75)) decrease, and a 94 +/- 119% increase in conductive ventilation heterogeneity. There was a significant correlation of Fe(NO,50) decrease with FEF(25-75) decrease (P = 0.006) but not with FEV(1) decrease or with increased ventilation heterogeneity. Simulations confirmed the negligible effect of ventilation heterogeneity on Fe(NO,50) and showed that the histamine-induced Fe(NO,50) decrease was due to constriction, with associated reduction in NO flux, of airways located proximal to generation 15. The model also indicated that the most marked effect of airways constriction on Fe(NO,50) is situated in generations 10-15 and that airway constriction beyond generation 15 markedly increases Fe(NO,50) due to interference with the NO backdiffusion effect. These mechanical factors should be considered when interpreting exhaled NO in lung disease. 相似文献
3.
Kolbe J.; Kleeberger S. R.; Menkes H. A.; Spannhake E. W. 《Journal of applied physiology》1987,63(2):497-504
Hypocapnia-induced constriction of peripheral airways may be important in regulating the distribution of ventilation in pathological conditions. We studied the response of the peripheral lung to hypocapnia in anesthetized, paralyzed, mechanically ventilated dogs using the wedged bronchoscope technique to measure resistance of the collateral system (Rcs). A 5-min hypocapnic challenge produced a 161 +/- 19% (mean +/- SE) increase in Rcs. The magnitude of this response was not diminished with repeated challenge or by atropine sulfate (1 mg base/kg iv), chlorpheniramine maleate (5 mg base/kg iv), or indomethacin (5 mg/kg iv). The response was reduced by 75% by isoproterenol (5 micrograms/kg iv) (P less than 0.01) and reduced by 80% by nifedipine (20 micrograms/kg iv) (P less than 0.05). During 30-min exposure to hypocapnia the maximum constrictor response occurred at 4-5 min, after which the response attenuated to approximately 50% of the maximum response (mean = 53%, range 34-69%). Further 30-min challenges with hypocapnia resulted in significantly decreased peak responses, the third response being 50% of the first (P less than 0.001). The inability of indomethacin or propranolol to affect the tachyphylaxis or attenuation of the response suggests that neither cyclooxygenase products nor beta-adrenergic activity was involved. Hence, hypocapnia caused a prompt and marked constrictor response in the peripheral lung not associated with cholinergic mechanisms or those involving histamine H1-receptors or prostaglandins. With prolonged exposure to hypocapnia there was gradual attentuation of the constrictor response with continued exposure and tachyphylaxis to repeated exposure both of which would tend to diminish any compensatory effect of hypocapnic airway constriction on the distribution of ventilation. 相似文献
4.
Exercise training enhances adrenergic constriction and dilation in the rat spinotrapezius muscle 总被引:1,自引:0,他引:1
Treadmill training increases functionalvasodilation in the rat spinotrapezius muscle, although there is noacute increase in blood flow and no increase in oxidative capacity. Toassess concurrent changes in vascular reactivity, we measured arterial diameters in the spinotrapezius muscle of sedentary (Sed) and treadmill-trained (Tr; 9-10 wk; terminal intensity 30 m/min,1.5° incline, for 90 min) rats during iontophoretic application of norepinephrine, epinephrine (Epi), andH+ (HCl) and during superfusionwith adenosine. Terminal-feed arteries and first-order arterioles in Trrats constricted more than those in Sed rats at the higher currentdoses of norepinephrine and Epi. In contrast, at low-current doses ofEpi, first- and second-order arterioles dilated in Tr but not in Sedrats. The vascular responses to HCl were highly variable, butsecond-order arterioles of Tr rats constricted more than those of Sedrats at intermediate-current doses. There were no significantdifferences between Sed and Tr rats in the vascular responses toadenosine. Both adrenergic vasodilation and vasoconstriction wereenhanced in the spinotrapezius muscle of Tr rats, and enhancedadrenergic vasodilation may contribute to increased functionalvasodilation. These observations further demonstrate vascularadaptations in "nontrained" skeletal muscle tissues. 相似文献
5.
Airflow distribution through the tracheobronchial tree is influenced by many factors. In a hollow cast of the central airways, the only factors involved are resistance and inertia of the airflow. Distribution of steady flow during both inhalation and exhalation was measured at different total flow rates in human and canine tracheobronchial casts. The resulting airflow rates in peripheral segments were measured with a sensitive apparatus, which did not disturb the distribution of flow. Inertia of the airflow was found to be small but significant in airways of the human cast and substantially greater in the canine airway cast than in the human cast during inhalation. The influence of airflow inertia during inhalation was largely responsible for the different distributions of flow during inhalation and exhalation through the airway casts. Airflow resistance was found to be considerably greater during exhalation and may have contributed to the redistribution of flow. The forces involved are small but should be considered when modeling the in vivo distribution of airflow. 相似文献
6.
7.
Rigidity of tracheae and bronchi during muscular constriction 总被引:8,自引:0,他引:8
8.
9.
The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung. 相似文献
10.
Stability of airways during reflex bronchoconstriction 总被引:1,自引:0,他引:1
11.
N. Rashevsky 《Bulletin of mathematical biology》1941,3(2):57-62
The approximate equation is derived for the rate of constriction of a dividing cell, describing the phenomenon from its early
stages. The equation previously derived by G. Young for the case when the constriction has already considerably progressed
is obtained as a limiting case. 相似文献
12.
Axial and secondary velocity profiles were measured in a model human central airway to clarify the oscillatory flow structure during high-frequency oscillation. We used a rigid model of human airways consisting of asymmetrical bifurcations up to third generation. Velocities in each branch of the bifurcations were measured by two-color laser-Doppler velocimeter. The secondary velocity magnitudes and the deflection of axial velocity were dependent not only on the branching angle and curvature ratio of each bifurcation, but also strongly depended on the shape of the path generated by the cascade of branches. Secondary flow velocities were higher in the left bronchus than in the right bronchus. This spatial variation of secondary flow was well correlated with differing gas transport rates between the left and right main bronchus. 相似文献
13.
Phillips SA Hatoum OA Gutterman DD 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H93-100
Flow-induced dilation (FID) is an important physiological stimulus that regulates tissue blood flow and is mediated by endothelium-derived factors that play a role in vascular integrity and the development of atherosclerosis. In coronary artery disease (CAD), conduit artery FID is impaired. The purpose of this study was to determine the mechanism of FID in human visceral adipose and examine whether the presence of conduit coronary atherosclerosis is associated with altered endothelial function in visceral fat. FID was determined in isolated visceral fat arterioles from patients with and without CAD. After constriction with endothelin-1, increases in flow produced an endothelium-dependent vasodilation that was sensitive to N(omega)-nitro-l-arginine methyl ester (l-NAME) in visceral fat arterioles from patients without CAD. In contrast, l-NAME alone or in combination with indomethacin had no effect on FID in similarly located arterioles from patients with CAD. Flow increased dichlorofluorescein (DCF) and dihydroethidium fluorescence accumulation in arterioles from patients with CAD versus without, indicative of the production of oxidative metabolites and superoxide, respectively. Both the dilation and DCF fluorescence to flow were reduced in the presence of the H(2)O(2) scavenger polyethylene glycol-catalase. Exogenous H(2)O(2) elicited similar relaxations of arterioles from patients in both groups. These data indicate that FID in visceral fat arterioles is nitric oxide dependent in the absence of known CAD. However, in the presence of CAD, H(2)O(2) replaces nitric oxide as the mediator of endothelium-dependent FID. This study provides evidence that adverse microvascular changes during CAD are evident in human visceral adipose, a tissue associated with CAD. 相似文献
14.
Payne GW Madri JA Sessa WC Segal SS 《American journal of physiology. Heart and circulatory physiology》2003,285(2):H493-H498
Histamine increases the permeability of capillaries and venules but little is known of its precapillary actions on the control of tissue perfusion. Using gene ablation and pharmacological interventions, we tested whether histamine could increase muscle blood flow through stimulating nitric oxide (NO) release from microvascular endothelium. Vasomotor responses to topical histamine were investigated in second-order arterioles in the superfused cremaster muscle of anesthetized C57BL6 mice and null platelet endothelial cell adhesion molecule-1 (PECAM-1-/-) and null endothelial NO synthase (eNOS-/-) mice aged 8-12 wk. Neither resting (17 +/- 1 microm) nor maximum diameters (36 +/- 2 microm) were different between groups, nor was the constrictor response (approximately 5 +/- 1 microm) to elevating superfusate oxygen from 0 to 21%. For arterioles of C57BL6 and PECAM-1-/- mice, cumulative addition of histamine to the superfusate produced vasodilation (1 nM-1 microM; peak response, 9 +/- 1 microm) and then vasoconstriction (10-100 microM; peak response, 12 +/- 2 microm). In eNOS-/- mice, histamine produced only vasoconstriction. In C57BL6 and PECAM-1-/- mice, vasodilation was abolished with Nomega-nitro-l-arginine (30 microM); in all mice, vasoconstriction was abolished with nifedipine (1 microM). Vasomotor responses were eliminated with pyrilamine (1 microM; H1 receptor antagonist) yet remained intact with cimetidine (1 microM; H2 receptor antagonist). These findings illustrate that the biphasic vasomotor response of mouse cremaster arterioles to histamine is mediated through H1 receptors on endothelium (NO-dependent vasodilation) as well as smooth muscle (Ca2+ entry and constriction). Thus histamine can increase as well as decrease muscle blood flow, according to local concentration. However, when NO production is compromised, only vasoconstriction and flow reduction occur. 相似文献
15.
F R Laurindo C K Finton D Ezra J F Czaja G Z Feuerstein R E Goldstein 《FASEB journal》1988,2(9):2479-2486
Thromboxane A2 and cysteinyl leukotrienes are highly effective microvessel constrictors in normally perfused myocardium. Their release during acute coronary thrombosis might augment myocardial underperfusion. The constrictor action of these substances could be modified substantially, however, by concomitant myocardial ischemia. We compared the effects of the two eicosanoid constrictors in normally perfused and ischemic myocardium of 24 open-chest, pentobarbital-anesthetized pigs. Left anterior descending coronary flow was measured after intracoronary bolus injections of the stable thromboxane A2 analog U46619 (1-10 micrograms) or leukotriene D4 (LTD4, 1-10 micrograms). Each dose was given before and during myocardial ischemia induced by a snare adjusted to produce 63 +/- 2% decrease in coronary flow for 10 min. Marked dose-independent inhibition of eicosanoid-induced coronary flow decrease occurred during ischemia. With 10 micrograms U46619, coronary flow decrease in the unoccluded state (25 +/- 2 from 55 +/- 4 ml/min pretreatment baseline) was virtually eliminated during snare occlusion (1 +/- 1 from 21 +/- 3 ml/min pretreatment baseline, P less than 0.001). Similar results occurred with LTD4. Distal coronary pressure during ischemia indicated a lack of microvessel responsiveness to the eicosanoids rather than a buffering of resistance change by the snare. U46619 and LTD4 did induce transient, small reductions in regional shortening fraction during ischemia. Our data suggest that eicosanoid-induced constriction of myocardial resistance vessels is not a likely complication of acute coronary thrombosis. However, eicosanoids could depress residual contractility in moderately ischemic regions. 相似文献
16.
We present a physical analysis of the dynamics and mechanics of contractile actin rings. In particular, we analyze the dynamics of ring contraction during cytokinesis in the Caenorhabditis elegans embryo. We present a general analysis of force balances and material exchange and estimate the relevant parameter values. We show that on a microscopic level contractile stresses can result from both the action of motor proteins, which cross-link filaments, and from the polymerization and depolymerization of filaments in the presence of end-tracking cross-linkers. 相似文献
17.
Information regarding the deposition patterns of inhaled particles has important implications to the fields of medicine and
risk assesment. The former concerns the targeted delivery of inhaled pharmacological drugs (aerosol therapy); the latter concerns
the risk assessment of inhaled air pollutants (inhalation toxicology). It is well documented in the literature that the behavior
and fate of inhaled particles may be formulated using three families of variables: respiratory system morphologies, aerosol
characteristics, and ventilatory parameters. It is straightforward to propose that the seminal role is played by morphology
per se because the structures of individual airways and their spatial orientations within lungs affect the motion of air and the
trajectories of transported particles. In previous efforts, we have developed original algorithms to describe airway networks
within lungs and employed them as templates to interpret the results of single photon emission computed tomography (SPECTs)
studies. In this work, we have advanced the process of mathematical modeling and computer simulations to produce three-dimensional
(3D) images. We have tested the new in silico model by studying two different branching concepts: an inclusive (all airways present) system and a single “typical” pathway
system. When viewed with the glasses supplied with this volume, the 3D nature of airway branching networks within lungs as
displayed via our original computer graphics software is clear. We submit that the new technology will have numerous and seminal
functions in future medical and toxicological regimens, the most fundamental being the creation of a platform to view natural
3D structures in vivo with related biological processes (e.g., disposition of inhaled pharmaceuticals). 相似文献
18.
Water and secretions interact in airways to produce the sol and gel layers that allow for entrapment of foreign materials and subsequent clearance by ciliary movement and by cough. Active Cl ion transport produces fluid, and this process is activated by products of mast cells (leukotrienes), eosinophils (major basic protein), and by other inflammatory mediators (prostaglandins, bradykinin). Gland secretions produce the bulk of the volume of secretions. Airway irritation stimulates gland secretion reflexly via vagal muscarinic pathways. Recently, the sensory nerves have been discovered to release substance P and other neuropeptides when the airways are irritated. The stimulatory effects of neuropeptides on gland secretion (and on other inflammatory sites) are modulated by enkephalinase a membrane-bound enzyme that cleaves neuropeptides and thereby inactivates them. Up- or down-regulation of enkephalinase is predicted to change the degree of inflammatory response to neuropeptides. Finally, the cell surface of airway epithelial cells have been discovered to secrete large molecular weight glycoconjugates; these secreted products are increased markedly by a series of proteinases produced by inflammatory cells (neutrophils, mast cells) and by bacteria. Their exact physiologic roles are still unknown but they may contribute to the bulk and viscoelastic properties of airway secretions, and they may serve an important role in bacterial, viral and inflammatory cell adhesion. 相似文献
19.
20.
Green AS 《Journal of biomechanics》2004,37(5):661-667
Some respiratory diseases result in the inflammation of the lung airway epithelium. An associated chronic cough, as found in many cases of asthma and in long-term smokers, can exacerbate damage to the epithelial layer. It has been proposed that wall shear stresses, created by peak expiratory flow-rates during a coughing episode, are responsible. The work here uses a computational fluid dynamics technique to model peak expiratory flow in the trachea and major lung bronchi. Calculated wall shear stress values are compared to a limited set of published measurements taken from a physical model. The measurements are discussed in the context of a flow study of a complex bronchial network. A more complete picture is achieved by the calculation method, indicating, in some cases, higher maximum wall shear stresses than measured, confirming the original findings of the experimental work. Recommendations are made as to where further work would be beneficial to medical applications. 相似文献