首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Letrozole (CGS 20267) is a non-steroidal aromatase inhibitor which, at its maximally effective dose of 1 mg/kg p.o., elicits endocrine effects equivalent to those seen after ovariectomy. Adult, female cyclic rats were administered letrozole (1 mg/kg p.o.) once daily for 14 days. A control group of animals was ovariectomized on day 1 of treatment and a third group of animals served as untreated controls. During the experiment, vaginal smears were taken daily and at the end of 14 days all animals were sacrificed, trunk blood was taken for serum estradiol, LH and FSH measurements and the uterus and ovaries were removed and weighed. The ovaries were then fixed and prepared for histological examination. Serum hormone measurements showed that after treatment with letrozole, serum estradiol levels were reduced by 76% of untreated controls and serum LH was elevated to 378% of control values. These compared favorably with those seen after ovariectomy, serum estradiol was reduced by 78% and serum LH was elevated to 485% of untreated controls. However, FSH was unchanged after letrozole treatment (125% of control), whereas after ovariectomy FSH rose to 398% of control. Uterine weight was suppressed in the letrozole-treated animals as well as the ovariectomized animals by 60 and 70%, respectively. The histology of the ovaries of animals treated with letrozole were consistent with the serum hormone findings. Except for the effects on serum FSH, these results confirm previous findings that treatment with letrozole elicits endocrine effects similar to those seen after ovariectomy. Furthermore, these results demonstrate that FSH secretion is not under the control of estradiol whereas LH secretion is under feedback control of ovarian estrogen.  相似文献   

4.
Experiments were conducted to assess the relative contribution of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to the regulation of estradiol secretion by the testis of the 12-day-old rat. In an in vivo model system, stimulation of the whole testis with NIH-FSH-S13 (5% LH activity) caused an 8-fold increase in testosterone secretion within 1 h followed by a 5-fold increase in estradiol secretion. Qualitatively, similar findings were obtained from whole testes incubated in tissue culture medium 199. The in vitro system was used to further examine the response of the testes to LH and FSH. Testes exposed to a variety of doses of LH or 10 ng/ml of highly purified FSH (3 X 13, 1% LH activity) showed no change in estradiol secretion. However, a synergistic effect was observed when purified FSH and LH were combined, provided the LH concentration exceeded 25 pg/ml. It is suggested that FSH secretion in infant rats maintains the aromatizing capacity of the seminiferous tubule at a level such that availability of aromatizable substrate becomes a major factor in the rate of tubular estrogen formation.  相似文献   

5.
K Yoshikawa  T Aizawa 《FEBS letters》1988,237(1-2):183-186
Searching for somatic cells expressing the preproenkephalin (A) gene in the testis, we have isolated Sertoli cells from the testes of 20-day-old rats. Cultured Sertoli cells contained a single species (about 1.5 kb) of preproenkephalin mRNA, and follicle-stimulating hormone (FSH) transiently increased the mRNA abundance to a maximum (about 30 molecules per cell) at 12 h. Various compounds that activate the cyclic AMP system in Sertoli cells similarly increased the abundance of preproenkephalin mRNA. Moreover, FSH increased intracellular Met-enkephalin immunoreactive peptides in Sertoli cells. Thus, the preproenkephalin gene expression in Sertoli cells is positively regulated by FSH through the cyclic AMP system.  相似文献   

6.
7.
The effects of castration on the postovulatory secretion of follicle-stimulating hormone (FSH) was measured in mated rabbits. When ovaries were removed at 12 or 18 h postcoitum, FSH increased within 24 h of surgery but without evidence of the previously observed pattern of FSH secretion in the postovulatory period. To prevent the postcastration rise in FSH, various doses of estradiol were injected into does castrated 12 h after mating. Two micrograms estradiol/kg, given daily, was found to prevent the postcastration rise of FSH but was not sufficient to suppress the postovulatory secretion of FSH in intact animals. The postovulatory pattern of FSH release was disrupted in does castrated at either 12 or 18 h postcoitum despite adequate estradiol replacement therapy. Furthermore, in chronically castrated does treated with estradiol (2 micrograms/kg per day), neither mating nor human chorionic gonadotropin (hCG) injection elicited any change in blood FSH levels even though both treatments have been previously found to cause a postovulatory FSH surge. The results of these studies indicate that the ovary, by way of some ovarian secretion, is required for the postovulatory secretion of FSH in the rabbit. The necessary ovarian factor does not appear to be estradiol.  相似文献   

8.
A horizontal knife cut was placed between the dorsal anterior hypothalamic area (DAHA) and the medial basal hypothalamus to examine the role of the DAHA in the selective secretion of follicle-stimulating hormone (FSH) following unilateral ovariectomy (ULO) and bilateral ovariectomy of the rat. Complete cuts markedly attenuated the increase in FSH observed 8 h after ULO, whereas incomplete or sham cuts did not. Concentration of luteinizing hormone (LH) did not increase in any group. These cuts also blocked the prolongation of estrous FSH secretion observed in long-term hemicastrated rats, since FSH levels on estrus were significantly lower in rats with complete cuts than in those rats given sham or incomplete cuts. In contrast, neural surgery had no effect on proestrous FSH concentrations. Finally, when FSH levels were monitored 2 days after bilateral ovariectomy, the postcastration rise in FSH was not altered by any neurosurgical procedures. These results support the hypothesis that a neural system originating in, or passing through, the DAHA is necessary for the selective increase in FSH following ULO.  相似文献   

9.
We screened the gene that encodes tetratricopeptide repeat domain 29 (Ttc29) in the maturing rat testis. Gene expression was determined by Northern blotting of 7-week-old rat testes, and a strong signal was detected close to the 18S rRNA band in addition to two weak high-molecular-weight signals. In situ hybridization revealed that Ttc29 was expressed primarily in the spermatocytes. We evaluated the effect of gonadotropin on Ttc29 expression using hypophysectomized rats. The pituitary was removed from 3-week-old rats, gonadotropin was injected at 5 weeks, and Ttc29 expression was determined at 7 weeks. Although testicular development and hyperplasia of interstitial cells were observed following chorionic gonadotropin treatment after hypophysectomy, Ttc29 expression was upregulated by treatment with follicle-stimulating hormone. Ttc29 encodes axonemal dynein, a component of sperm flagella. Taken together, these data indicate that axonemal dynein expression starts in the spermatocytes and is regulated by follicle-stimulating hormone.  相似文献   

10.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

11.
The nature of secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) was followed in female rabbits on a daily basis from age 36 to 60 days by sequential 5-min blood sampling over 1- to 2-h periods each day. Both LH and FSH were found to be secreted in a pulsatile manner. The mean LH pulse amplitude over the 25 days was 0.95 +/- 0.32 ng/mL and for FSH it was 10.15 +/- 1.11 ng/mL. Mean plasma LH levels were significantly increased from 1.46 +/- 0.08 ng/mL in 36 to 42-day-old rabbits to 1.89 +/- 0.12 ng/mL in 43 to 50-day-old rabbits and remained elevated from 50 to 60 days. FSH levels during the same periods also rose significantly from 14.93 +/- 0.79 to 19.57 +/- 2.05 ng/mL. To examine the influence of endogenous opioid peptides on the release of LH and FSH in 36 to 60-day-old female rabbits, morphine sulfate at 0.2, 0.5, 2.0, and 5.0 mg/kg was administered subcutaneously after 30 min baseline sampling, and blood was taken for another 60-120 min. Morphine at all doses and at all ages inhibited the amplitude and frequency of LH pulses but had no effect on FSH secretion. To determine whether the effects of morphine on LH secretion could be reversed with naloxone, females aged 82-114 days were used. Naloxone administered 1 h after morphine reversed the inhibitory effects of morphine, whereas the simultaneous administration of naloxone with morphine had variable effects but seemed to delay the LH increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Follicle-stimulating hormone (FSH) and vitamin A (retinol) are two of the main regulators of the male reproductive system. Recently, it has been described that extracellular purines can affect some important reproductive-related functions in Sertoli cells and germinative cells, by activating specific purinergic receptors. In this work, we report that both FSH and retinol are able to induce changes in the levels of extracellular purines of cultured rat Sertoli cells. FSH induced an increase in adenosine, mainly caused by enhanced ecto-ATPase activity, while retinol increased xanthine and hypoxanthine levels, and decreased uric acid concentration by an unknown mechanism. These data indicate that purinergic signaling may be involved in the control and/or regulation of some of the reproductive-related actions of these hormones. (Mol Cell Biochem 278: 185–194, 2005)  相似文献   

13.
Primary cultures of ovine pituitary cells were used to characterize the effects of inhibin and activin on the secretion of gonadotropins and on the regulation of number of GnRH receptors in the presence or absence of estradiol. Number of GnRH receptors was determined by the specific binding of a saturating dose of [125I]des-Gly10-D-Trp6-GnRH-ethylamide (GnRH-A). Recombinant human inhibin-A (rh-inhibin-A) or inhibin in porcine and bovine follicular fluid (pFF and bFF, respectively) decreased secretion of FSH in a dose-dependent manner, with maximum inhibition at an inhibin concentration of approximately 0.1 nM. Neither pFF or bFF affected secretion of LH, although rh-inhibin-A caused a modest decrease (p less than 0.05) in secretion of LH. Treatment of cells with rh-inhibin-A, bFF, or pFF approximately doubled the number of GnRH receptors. Scatchard analysis indicated that increases in GnRH-A binding were due to an increase in receptor number rather than a change in affinity. Additionally, rh-inhibin-A, at a dose that doubled numbers of GnRH receptors, increased GnRH-induced LH release above that caused by GnRH alone, indicating that the increase in receptor number leads to increased responsiveness to GnRH. Recombinant human activin-A (rh-activin-A) increased secretion of FSH but did not affect secretion of LH. Number of GnRH receptors was not affected by lower concentrations of rh-activin-A but was decreased (p less than 0.05) by 3.0 nM activin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In several physiological paradigms, secretion of FSH and LH are not coordinately regulated. Because these hormones appear to be produced by a single cell type in the anterior pituitary gland, their discordant regulation must be related to differential intracellular responses to various stimuli. Estradiol-17beta (estradiol) has been shown to influence secretion of both FSH and LH and some of its effects are mediated directly on the gonadotrope. Changes in expression of intrapituitary factors such as activin and follistatin may mediate effects of estradiol and account for discordant patterns of FSH and LH. The aims of this study were 1) to determine if estradiol alters expression of genes encoding activin, follistatin, or both in ovine pituitary cells; and 2) to observe the effects of immunoneutralizing activin B in vitro on gonadotropin secretion. Pituitary cells from five ewes in the anestrous season were cultured for 24 h with estradiol (0.01 or 1.0 nM). Estradiol reduced basal secretion of FSH in a dose-dependent manner (P: < 0.001) and simultaneously increased basal secretion of LH (P: < 0.001). Decreased secretion of FSH in estradiol-treated cultures was accompanied by suppressed levels of FSHbeta subunit mRNA (P: < 0.001). Amounts of mRNA for activin beta(B) were reduced in a dose-dependent manner by estradiol (27% +/- 4.9% at 0.01 nM, P: < 0.02; and 46% +/- 3.9% at 1.0 nM, P: < 0.002). In contrast, mRNA for follistatin was not affected by treatment with estradiol. Treatment of pituitary cells with an antibody to activin B reduced secretion of FSH by 50% (P: < 0.01) without influencing secretion of LH. These data lead us to conclude that discordant secretion of gonadotropins can be induced by estradiol acting directly at the pituitary level. The inhibitory effect of estradiol on FSH secretion may be mediated indirectly through decreased pituitary expression of the activin gene.  相似文献   

15.
These studies attempted to elucidate the relationship between estradiol and luteinizing hormone (LH) secretion in chronically underfed (R) adult female rats. Examination of the response to ovariectomy revealed a significant delay in the onset of the postcastration increase in LH secretion in R females compared to control (C) animals. Chronic estrogen treatment in the form of Silastic capsules containing varying doses of E2. The response of C females was dose-dependent, ranging from complete suppression at 10 micrograms E2/animal to an absence of inhibition at 2.4 micrograms E2/animal. The acute response of LH secretion to E2 administration in the ovariectomized female indicated an increased suppression of plasma LH at 6 and 24 h after a single s.c. injection of estradiol benzoate (EB) in R compared to C animals. There was no difference between R and C rats in the ratio of free to protein-bound estradiol in the serum. The results of these studies suggest that the negative feedback efficacy of estrogen on LH secretion is significantly enhanced by reduced food intake in adult female rats and may be responsible for the loss of reproductive cyclicity in these animals.  相似文献   

16.
Changes at the anterior pituitary gland level which result in follicle-stimulating hormone (FSH) release after ovariectomy in metestrous rats were investigated. Experimental rats were ovariectomized at 0900 h of metestrus and decapitated at 1000, 1100, 1300, 1500, 1700 or 1900 h of metestrus. Controls consisted of untreated rats killed at 0900 or 1700 h and rats sham ovariectomized at 0900 h and killed at 1700 h. Trunk blood was collected and the serum assayed for FSH and luteinizing hormone (LH) concentrations. The anterior pituitary gland was bisected. One-half was used to assay for FSH concentration. The other half was placed in culture medium for a 30-min preincubation and then placed in fresh medium for a 2-h incubation (basal FSH and LH release rates). The basal FSH release rate and the serum FSH concentration rose significantly by 4 h postovariectomy and remained high for an additional 6 h. The basal FSH release rate and the serum FSH concentration correlated positively (r=0.71 with 72 degrees of freedom) and did not change between 0900 and 1700 h in untreated or sham-ovariectomized rats. In contrast, the serum LH concentration and the basal LH release rate did not increase after ovariectomy. Ovariectomy had no significant effect on anterior pituitary gland FSH concentration. The results suggest that the postovariectomy rise in serum FSH concentration is the result, at least in part, of changes which cause an increase in the basal FSH secretion rate (secretion independent of the immediate presence of any hormones of nonanterior pituitary gland origin). The similarities between the selective rises in the basal FSH release rate and the serum FSH concentration in the ovariectomized metestrous rat and in the cyclic rat during late proestrus and estrus raise the possibility that an increase in the basal FSH release rate may be involved in many or all situations in which serum FSH concentration rises independently of LH.  相似文献   

17.
There are situations in which adult female rats release increased amounts of follicle-stimulating hormone (FSH) independent of increased luteinizing hormone (LH) release. This results from, at least in part, a selective increase in the basal FSH release rate. We investigated whether an increase in the basal FSH release rate is contributory to the rise in serum FSH levels which occurs independent of a rise in serum LH levels in the immature female rat. Rats had high serum FSH concentrations on days 7 and 15 after birth, low serum FSH levels on day 23, and low serum LH levels on all three days. In contrast, anterior pituitary gland (APG) FSH and LH concentrations and contents increased from day 7 to day 15 and the contents increased further from day 15 to day 23. Similarly, basal FSH and LH release rates per mg APG or per APG, as assessed by measurement of FSH and LH released into culture medium containing APG(s) from different aged rats, increased from day 7 to day 15 but did not increase further between days 15 and 23. The results indicate that unlike situations observed to date in adult female rats, a mechanism(s) other than an increase in the basal FSH release rate is involved in selective FSH release in the immature female rat.  相似文献   

18.
The study presented characterizes the ovarian and pituitary function of the aged female macaque through a complete annual reproductive cycle to compare hormone dynamics during the human and nonhuman primate menopausal transition. Data collected over an entire year from aged macaque females indicated that urinary FSHbeta subunit baseline levels statistically significantly increased in females after age-related abnormal menstrual cycles occurred. These abnormal cycles were followed by anovulation and complete cessation of follicular activity. No statistically significant difference in urinary FSHbeta subunit levels was seen between females that exhibited year-round normal ovarian cycles and those that exhibited seasonal ovarian cycles followed by an interval of anovulation during the nonbreeding season. Basal urinary estrogen metabolite levels were not observed to decrease until ovarian cycles became abnormal and FSHbeta subunit levels began to rise. Early follicular phase circulating inhibin beta levels were statistically significantly reduced only when ovariectomized females were compared to the year-round normally cycling females. A statistically nonsignificant trend toward decreased inhibin secretion, however, was apparent in aged females with normal cycles, aged females with abnormal cycles, anovulatory aged females, and finally, ovariectomized females. Whereas decreased circulating levels of dehydroepiandrosterone sulfate showed a general decline over the 1-yr study period in all groups, they were lowest in the year-round normally cycling group, progressively higher in the normal-to-anovulatory group and abnormal-to-anovulatory group, and highest in the anovulatory group. Finally, the nonbreeding season was associated with the highest number of abnormal cycles, suggesting that onset of complete ovarian senescence in these study macaques was more likely to occur during that time (i.e., females were less likely to return to normal ovarian cycles the following breeding season and more likely to exhibit permanent ovarian quiescence).  相似文献   

19.
The regulation of ovarian granulosa cell angiotensin II (Ang-II) receptor formation and progesterone secretion by follicle-stimulating hormone (FSH) and Ang-II was studied in cultured cells prepared from hypophysectomized, diethylstilbestrol-treated immature rats. Ang-II receptors (estimated by the specific cell binding of the Ang-II receptor antagonist 125I-[Sar1,Ile8]Ang-II) were present on freshly prepared granulosa cells and increased by over 2-fold (to 2150 binding sites/cell; KD = 0.5 nM) when cultured in serum-free medium for 48 h. FSH prevented the normal increase in Ang-II receptor expression. Maximal FSH-dependent decrease in Ang-II receptors and increase in progesterone secretion occurred at 100 ng/ml FSH. The inhibitory effect of FSH on granulosa cell Ang-II receptor content was partially mimicked by the cAMP analogue 8-bromo-cAMP, since 8-bromo-cAMP suppressed (by 96%) Ang-II receptor content to a greater extent than FSH (by 60%). Granulosa cell Ang-II receptor content was not modified by progesterone or 17 beta-estradiol, but was decreased by testosterone (by 35%). Ang-II also produced a decrease in granulosa cell Ang-II receptor content, but did not modify progesterone secretion or aromatase activity. The effect of Ang-II on granulosa cell Ang-II receptor content was mimicked by the Ca2+ ionophore A23187, but not by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, suggesting that an elevation of cytosolic Ca2+ may be important for the homologous down-regulation of the Ang-II receptor. These data show homologous and heterologous down-regulation of granulosa cell Ang-II receptors. If these regulatory mechanisms exist in the FSH-sensitive healthy follicle, our findings suggest that in the process of maturation, healthy and dominant follicles may become decoupled from angiotensinergic influences.  相似文献   

20.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号