首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
造血干细胞分化生成巨核细胞是一个十分复杂的过程,包括造血干细胞动员及其向巨核系祖细胞分化,巨核系祖细胞增殖、分化生成未成熟巨核细胞,巨核细胞的成熟和血小板释放等过程。研究发现,造血干细胞动员及其向各系细胞分化的大部分过程都在一种称为"龛"的结构中进行,多种龛内信号分子参与了造血干细胞的动员和分化调控。该文对造血干细胞龛内参与造血干细胞动员和分化生成巨核细胞的几种重要细胞因子及其调控作用进行综述。  相似文献   

2.
K Ozawa 《Human cell》1999,12(1):57-61
A hematopoietic stem cell is considered to be one of the ideal targets for gene therapy, and there is expectation that gene therapy will be established based on the technology of hematopoietic stem cell transplantation. However, in recent clinical trials of stem cell gene therapy for monogenic diseases, significant clinical improvement has not been reported. One of the main obstacles is the low efficiency of gene transfer into hematopoietic stem cells. Many investigators have been trying to improve the transduction efficiency to the clinically applicable level. Another approach to solve this problem is to develop the method for selective expansion of transduced hematopoietic stem cells in vivo. We are currently developing novel regulatory genes (selective amplifier genes) for stem cell gene therapy.  相似文献   

3.
M Saito 《Human cell》1992,5(1):54-69
A recent trend in hematological research fields has been to isolate and characterize hematopoietic stem cells/progenitors and their growth factors (hemopoietins) to gain a much better understanding of the nature of the stem cell and the mechanisms regulating its development. It is generally accepted that all the various types of blood cells develop from a single progenitor called a hematopoietic stem cell. Quantitative studies of the function of hemopoietic stem cells began two decades ago with the development of a spleen colony assay, and then, clonal cell culture techniques for committed progenitors were developed with several models for hematopoietic differentiation being proposed. Within the last few years, some hormones have been discovered that are known as hematopoietic growth hormones or hemopoietins, each of which is of protein nature and causes specific classes of blood cells to be made and primed. These hormones also enhance the function of the mature cells, the genes of which have recently been cloned. On the other hand, long-term bone marrow culture has recently permitted detailed investigations of the relationship between hematopoietic cells and the microenvironment in which they are found, e.g. stromal cells, in vitro, relating to the regulation of cell proliferation and differentiation. Further, in hematological fields, other bioactive factors including differentiation-inducing compounds, e. g. bioactive glycosphingolipids, and leukocyte-endothelial cell recognition molecules (adhesion receptors) have been discovered, the molecular mechanism(s) of which have yet to be elucidated. This communication focuses on recent advances in research on soluble hemopoietins and other bioactive factors relating to differentiation-induction and to cell-to-cell recognition.  相似文献   

4.
5.
Hematopoietic growth factors in autologous transplantation   总被引:1,自引:0,他引:1  
Hematopoietic growth factors (HGFs) sustain the survival, proliferation and differentiation of hematopoietic stem cells and some functions of mature blood cells. In man several HGFs have been characterised and cloned so far, and this has allowed investigators to confer the rationale for the clinical application of these molecules in hematology and oncology. In particular G-CSF and GM-CSF are currently utilised to abrogate the hematological toxicity of chemotherapy for standard and dose-intensified therapy, neutropenia following bone marrow and peripheral blood stem cell transplantation. Moreover there has recently been great interest in the ex vivo expansion of hematopoietic stem and progenitor cells for a variety of applications, such as in vitro tumor cell purging or for reducing the volume of blood processed by the leukapheresis. Several combinations of HGFs have been described to sustain the ex vivo survival and proliferation of these cells disclosing new opportunities in the field of stem cells transplants.  相似文献   

6.
7.
在基因治疗中,造血干细胞因为具有自我更新及分化为各种血细胞系的能力而成为一种很有吸引力的靶细胞。将外源目的基因导入造血干细胞,以纠正或补偿因基因缺陷和异常引起的疾病,特别是血液疾病已取得重要进展,例如:腺苷脱氨酶缺陷病、血友病、地中海贫血症及镰状细胞性贫血症等。而慢病毒以其转染效率高,能够感染非分裂期细胞的特点成为转染造血干细胞的最适合载体,本文就造血干细胞的特性、载体的选择及临床应用和基因治疗的安全性等方面作一综述。  相似文献   

8.
9.
Significant advances in the use of genetic and molecular biology strategies have recently begun to identify genes that have a major impact on the determination, commitment and developmental potential of hematopoietic stem cells. Using a variety of experimental strategies, genes such as SCL, GATA-2, HoxB4, Flk-2, c-mpl, dlk, and others have been implicated as important regulators of stem cell growth. In addition, genetic mapping has identified several loci that correlate strongly with stem cell numbers and proliferation.  相似文献   

10.
《Cytokine》2014,70(2):277-283
Chemotactic factors direct the migration of immune cells, multipotent stem cells, and progenitor cells under physiologic and pathologic conditions. Chemokine ligand 12 and chemokine ligand 7 have been identified and investigated in multiple studies for their role in cellular trafficking in the setting of tissue regeneration. Recent early phase clinical trials have suggested that these molecules may lead to clinical benefit in patients with chronic disease. Importantly, these two proteins may play additional significant roles in directing the migration of multipotent cells, such as mesenchymal stem cells and hematopoietic progenitor cells. This article reviews the functions of these two chemokines, focusing on recruitment to sites of injury, immune function modulation, and contributions to embryonic development. Additional research would provide valuable insight into the potential clinical application of these two proteins in stem cell therapy.  相似文献   

11.
Many genes have been identified that are specifically expressed in multiple types of stem cells in their undifferentiated state. It is generally assumed that at least some of these putative "stemness" genes are involved in maintaining properties that are common to all stem cells. We compared gene expression profiles between undifferentiated and differentiated embryonic stem cells (ESCs) using DNA microarrays. We identified several genes with much greater signal in undifferentiated ESCs than in their differentiated derivatives, among them the putative stemness gene encoding junctional adhesion molecule B (Jam-B gene). However, in spite of the specific expression in undifferentiated ESCs, Jam-B mutant ESCs had normal morphology and pluripotency. Furthermore, Jam-B homozygous mutant mice are fertile and have no overt developmental defects. Moreover, we found that neural and hematopoietic stem cells recovered from Jam-B mutant mice are not impaired in their ability to self-renew and differentiate. These results demonstrate that Jam-B is dispensable for normal mouse development and stem cell identity in embryonic, neural, and hematopoietic stem cells.  相似文献   

12.
Eicosanoids have been implicated in the physiological regulation of hematopoiesis with pleiotropic effects on hematopoietic stem cells and various classes of lineage restricted progenitor cells. Herein we review the effects of eicosanoids on hematopoiesis, focusing on new findings implicating prostaglandin E(2) in enhancing hematopoietic stem cell engraftment by enhancing stem cell homing, survival and self-renewal. We also describe a role for cannabinoids in hematopoiesis. Lastly, we discuss the yin and yang of various eicosanoids in modulating hematopoietic stem and progenitor cell functions and summarize potential strategies to take advantage of these effects for therapeutic benefit for hematopoietic stem cell transplantation.  相似文献   

13.
Gene expression-based scores used to predict risk in cancer frequently include genes coding for DNA replication, repair or recombination. Using two independent cohorts of 206 and 345 previously-untreated patients with Multiple Myeloma (MM), we identified 50 cell cycle-unrelated genes overexpressed in multiple myeloma cells (MMCs) compared to normal human proliferating plasmablasts and non-proliferating bone marrow plasma cells and which have prognostic value for overall survival. Thirty-seven of these 50 myeloma genes (74%) were enriched in genes overexpressed in one of 3 normal human stem cell populations - pluripotent (18), hematopoietic (10) or mesenchymal stem cells (9) - and only three genes were enriched in one of 5 populations of differentiated cells (memory B lymphocytes, T lymphocytes, polymorphonuclear cells, monocytes, osteoclasts). These 37 genes shared by MMCs and adult or pluripotent stem cells were used to build a stem cell score ((SC)score), which proved to be strongly prognostic in the 2 independent cohorts of patients compared to other gene expression-based risk scores or usual clinical scores using multivariate Cox analysis. This finding highlights cell cycle-unrelated prognostic genes shared by myeloma cells and normal stem cells, whose products might be important for normal and malignant stem cell biology.  相似文献   

14.
15.
Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the "niche," which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach. Among the genes identified, we focused on the junctional adhesion molecule 4 (JAM4), an immunoglobulin type cell adhesion molecule. JAM4 protein was actually localized to the plasma membrane in male germ cells. JAM4 expression was downregulated as cells differentiated in both germ cell and hematopoietic cell lineages. To analyze function in vivo, we generated JAM4-deficient mice. Histological analysis of testes from homozygous nulls did not show obvious abnormalities, nor did liver and kidney tissues, both of which strongly express JAM4. The numbers of hematopoietic stem cells in bone marrow were indistinguishable between wild-type and mutant mice, as was male germ cell development. These results suggest that JAM4 is expressed in stem cells and progenitor cells but that other cell adhesion molecules may substitute for JAM4 function in JAM4-deficient mice both in male germ cell and hematopoietic lineages.  相似文献   

16.
Lifelong, many somatic tissues are replenished by specialized adult stem cells. These stem cells are generally rare, infrequently dividing, occupy a unique niche, and can rapidly respond to injury to maintain a steady tissue size. Despite these commonalities, few shared regulatory mechanisms have been identified. Here, we scrutinized data comparing genes expressed in murine long-term hematopoietic stem cells with their differentiated counterparts and observed that a disproportionate number were members of the developmentally-important, monoallelically expressed imprinted genes. Studying a subset, which are members of a purported imprinted gene network (IGN), we found their expression in HSCs rapidly altered upon hematopoietic perturbations. These imprinted genes were also predominantly expressed in stem/progenitor cells of the adult epidermis and skeletal muscle in mice, relative to their differentiated counterparts. The parallel down-regulation of these genes postnatally in response to proliferation and differentiation suggests that the IGN could play a mechanistic role in both cell growth and tissue homeostasis.  相似文献   

17.
Stem cell biology: a never ending quest for understanding   总被引:6,自引:0,他引:6  
Stem cells (SC) research is an important part of biotechnology that could lead to the development of new therapeutic strategies. A lot of effort has been put to understand biology of the stem cells and to find genes and subsequently proteins that are responsible for their proliferation, self-renewal and differentiation. Different cytokines and growth factors has been used to expand stem cells, but no combination of these factors was identified that could effectively expand the most primitive stem cells. Recently, however, genes and receptors responsible for SC proliferation and differentiation have been described. Ligands for these receptors or these genes themselves are being already used for ex vivo expansion of stem cells and the first data are very promising. New markers, such as CXCR4 and CD133, have been discovered and shown to be present on surface of hematopoietic stem cells. The same markers were recently also found to be expressed on neuronal-, hepatic- or skeletal muscle-stem cells. By employing these markers several laboratories are trying to isolate stem cells for potential clinical use. New characteristics of stem cells such as transdifferentiation and cell fusion have been described. Our team has identified a population of tissue committed stem cells (TCSC). These cells are present in a bone marrow and in other tissues and they can differentiate into several cell types including cardiac, neural and liver cells.  相似文献   

18.
The Mixed-Lineage Leukemia (MLL) gene encodes a Trithorax-related chromatin-modifying protooncogene that positively regulates Hox genes. In addition to their well-characterized roles in axial patterning, Trithorax and Polycomb family proteins perform less-understood functions in vertebrate hematopoiesis. To define the role of MLL in the development of the hematopoietic system, we examined the potential of cells lacking MLL. Mll-deficient cells could not develop into lymphocytes in adult RAG-2 chimeric animals. Similarly, in vitro differentiation of B cells required MLL. In chimeric embryos, Mll-deficient cells failed to contribute to fetal liver hematopoietic stem cell/progenitor populations. Moreover, we show that aorta-gonad-mesonephros (AGM) cells from Mll-deficient embryos lacked hematopoietic stem cell (HSC) activity despite their ability to generate hematopoietic progeny in vitro. These results demonstrate an intrinsic requirement for MLL in definitive hematopoiesis, where it is essential for the generation of HSCs in the embryo.  相似文献   

19.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

20.
The role of fibroblast growth factors and their receptors (FGFRs) in the regulation of normal hematopoietic stem cells is unknown. Here we show that, in mouse bone marrow, long-term repopulating stem cells are found exclusively in the FGFR(+) cell fraction. During differentiation toward committed progenitors, stem cells show loss of FGFR expression. Prolonged culture of bone marrow cells in serum-free medium supplemented with only FGF-1 resulted in robust expansion of multilineage, serially transplantable, long-term repopulating hematopoietic stem cells. Thus, we have identified a simple method of generating large numbers of rapidly engrafting stem cells that have not been genetically manipulated. Our results show that the multipotential properties of stem cells are dependent on signaling through FGF receptors and that FGF-1 plays an important role in hematopoietic stem cell homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号