首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species.  相似文献   

2.
3.
The application of bone morphogenetic proteins to dental tissue engineering   总被引:11,自引:0,他引:11  
Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development, the demonstration of stem cells in dental pulp and accumulating knowledge on biomaterial scaffolds have set the stage for tissue engineering and regenerative therapy of the craniofacial complex. Furthermore, the recent approval by the US Food and Drug Administration (FDA; Rockville, MD, USA) of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in dental applications. In the near term, these advances are likely to be applied to endodontics and periodontal surgery; ultimately, they may facilitate approaches to regenerating whole teeth for use in tooth replacement.  相似文献   

4.
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.  相似文献   

5.
Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell-cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered.  相似文献   

6.
Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry.  相似文献   

7.
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.  相似文献   

8.
Rodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors. Previous studies have suggested that FGF10, acting mainly through fibroblast growth factor receptor 2b (FGFR2b), is crucial for development of the epithelial stem cell population in mouse incisors. To explore the role of FGFR2b signaling during development and adult life, we used an rtTA transactivator/tetracycline promoter approach that allows inducible and reversible attenuation of FGFR2b signaling. Downregulation of FGFR2b signaling during embryonic stages led to abnormal development of the labial cervical loop and of the inner enamel epithelial layer. In addition, postnatal attenuation of signaling resulted in impaired incisor growth, characterized by failure of enamel formation and degradation of the incisors. At a cellular level, these changes were accompanied by decreased proliferation of the transit-amplifying cells that are progenitors of the ameloblasts. Upon release of the signaling blockade, the incisors resumed growth and reformed an enamel layer, demonstrating that survival of the stem cells was not compromised by transient postnatal attenuation of FGFR2b signaling. Taken together, our results demonstrate that FGFR2b signaling regulates both the establishment of the incisor stem cell niches in the embryo and the regenerative capacity of incisors in the adult.  相似文献   

9.
Reiterative signaling and patterning during mammalian tooth morphogenesis   总被引:47,自引:0,他引:47  
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.  相似文献   

10.
Mammalian cochlear sensory epithelial cells are believed to possess minimal regenerative potential because they halt proliferation during late stage of embryogenesis and never regenerate after birth. This means that sensorineural hearing loss caused by the death of cochlear sensory epithelial cells is a permanent condition. However, stem cells were recently identified in neonatal mice following dissociation of their inner ear organs. This suggests that regenerative therapy for sensorineural hearing loss may be possible. Unfortunately, dissociation distorts the microanatomy of the inner ear, making it difficult to determine the precise location of stem cells in unaltered specimens. To develop new therapeutic approaches based on sensory epithelial cell regeneration, the location of these stem cells must be elucidated. Stem cells normally proliferate at a slow rate in adult organs. In fact, so-called label-retaining cells, or slow-cycling cells, of the brain and skin are recognized as stem cells. In this study, using the exogenous proliferation marker, 5′-bromo-2′-deoxyuridine (BrdU) in combination with the endogenous proliferation marker Ki-67, we identified tympanic border cells. These cells, which are located beneath the basilar membrane in vivo, represent slow-cycling cells of the murine cochlea. Immunohistochemically, these cells stained positive for the immature cell marker Nestin. But it will be difficult to achieve regeneration of the cochlear function because these slow-cycling cells disappear in the mature murine cochlea.  相似文献   

11.
12.
The molecular and developmental factors that regulate tooth morphogenesis in nonmammalian species, such as snakes and lizards, have received relatively little attention compared to mammals. Here we describe the development of unicuspid and bicuspid teeth in squamate species. The simple, cone-shaped tooth crown of the bearded dragon and ball python is established at cap stage and fixed in shape by the differentiation of cells and the secretion of dental matrices. Enamel production, as demonstrated by amelogenin expression, occurs relatively earlier in squamate teeth than in mouse molars. We suggest that the early differentiation in squamate unicuspid teeth at cap stage correlates with a more rudimentary tooth crown shape. The leopard gecko can form a bicuspid tooth crown despite the early onset of differentiation. Cusp formation in the gecko does not occur by the folding of the inner enamel epithelium, as in the mouse molar, but by the differential secretion of enamel. Ameloblasts forming the enamel epithelial bulge, a central swelling of cells in the inner enamel epithelium, secrete amelogenin at cap stage, but cease to do so by bell stage. Meanwhile, other ameloblasts in the inner enamel epithelium continue to secrete enamel, forming cusp tips on either side of the bulge. Bulge cells specifically express the gene Bmp2, which we suggest serves as a pro-differentiation signal for cells of the gecko enamel organ. In this regard, the enamel epithelial bulge of the gecko may be more functionally analogous to the secondary enamel knot of mammals than the primary enamel knot.  相似文献   

13.
14.
Stem cells are considered to be among the principle scientific breakthroughs of the twentieth century for the future of medicine, and considered to be an important weapon to fight against diseases, particularly those that have resisted the efforts of science for a long time. Human dental tissues have limited potentials to regenerate but the discovery of dental stem cells have developed new and surprising scenario in regenerative dentistry. Stem cell treatments are one example of the possibility using adult cells sourced from patients’ own bodies’ means that it can be expected that in the near future such treatments may become routine at dental practices. The hope is that it will become possible to regenerate bone and dental tissues including the periodontal ligament, dental pulp and enamel, and that the creation of new teeth may also become feasible. In view of this possibility of achieving restoration with regenerative medicine, it can be considered that a new era of dentistry is beginning. Thus the aim of this review is to give dental professionals a brief overview of different stem cells sources and the latest findings and their implications for improving oral health and treating certain conditions of the human mouth and face.  相似文献   

15.
16.
Tooth enamel, a highly mineralized tissue covering the outermost area of teeth, is always damaged by dental caries or trauma. Tooth enamel rarely repairs or renews itself, due to the loss of ameloblasts and dental epithelial stem cells (DESCs) once the tooth erupts. Unlike human teeth, mouse incisors grow continuously due to the presence of DESCs that generate enamel-producing ameloblasts and other supporting dental epithelial lineages. The ready accessibility of mouse DESCs and wide availability of related transgenic mouse lines make mouse incisors an excellent model to examine the identity and heterogeneity of dental epithelial stem/progenitor cells; explore the regulatory mechanisms underlying enamel formation; and help answer the open question regarding the therapeutic development of enamel engineering. In the present review, we update the current understanding about the identification of DESCs in mouse incisors and summarize the regulatory mechanisms of enamel formation driven by DESCs. The roles of DESCs during homeostasis and repair are also discussed, which should improve our knowledge regarding enamel tissue engineering.  相似文献   

17.
Mouse, rat and human molars begin to form root after the completion of crown formation. In these teeth, fibroblast growth factor (Fgf) 10 disappears in the transitional stage from crown formation to root. By contrast, rodent incisors and vole molars demonstrate continuous growth, owing to the formation and maintenance of a stem cell compartment by the constant expression of Fgf10. To clarify the relationship between root formation and disappearance of Fgf10, we carried out two experiments for the loss and gain of Fgf10 function. First, we examined postnatal growth in the incisors of Fgf10-deficient mice, which have the defect of a dental epithelial stem cell compartment referred to as ;apical bud', after implantation under the kidney capsule. The growth at the labial side in the mutant mice mimics the development of limited-growth teeth. 5'-Bromo-2'-deoxyuridine (BrdU) labeling and cytokeratin (CK) 14 and Notch2 immunostaining suggested that the inhibition of inner enamel epithelium growth and the more-active proliferation of the outer enamel epithelium and/or stellate reticulum result in Hertwig's epithelial root sheath formation. Second, we examined the effects of Fgf10 overexpression in the transitional stage of molar germs, which led to the formation of apical bud involving in the inhibition of HERS formation. Taken together, these results suggest that the disappearance of Fgf10 signaling leads to the transition from crown to root formation, owing to the loss of a dental epithelial stem cell compartment.  相似文献   

18.
We have determined the distribution of amelogenin polypeptides in an order of elasmobranchs using indirect immunofluorescence with rabbit polyclonal antibodies prepared to purified murine amelogenins. We find that amelogenins are definitely present within the inner enamel epithelium prior to the production of the extracellular matrix component termed "enameloid" (row II developing tooth organs). During subsequent stages of selachian tooth development (row III tooth organs), immunofluorescence staining data indicated localization of amelogenin antigens within epithelium as well as the enameloid extracellular matrix. The results from these immunohistochemical studies suggest that the 16-20 kdalton amelogenins, which are characteristic of murine inner enamel epithelial cells undergoing terminal biochemical differentiation into secretory ameloblasts, may also be regarded as molecular markers for amelogenesis in developing teeth in the spiny dogfish, Squalus acanthias.  相似文献   

19.
Mesenchymal stem cells: a promising candidate in regenerative medicine   总被引:7,自引:0,他引:7  
Mesenchymal stem cells were initially characterized as plastic adherent, fibroblastoid cells. In recent years, there has been an increasing focus on mesenchymal stem cells since they have great plasticity and are potential for therapeutic applications. Mesenchymal stem cells or mesenchymal stem cell-like cells have been shown to reside within the connective tissues of most organs. These cells can differentiate into osteogenic, adipogenic and chondrogenic lineages under appropriate conditions. A number of reports have also indicated that these cells possess the capacity to trans-differentiate into epithelial cells and lineages derived from the neuro-ectoderm, and in addition, mesenchymal stem cells can migrate to the sites of injury, inflammation, and to tumors. These properties of mesenchymal stem cells make them promising candidates for use in regenerative medicine and may also serve as efficient delivery vehicles in site-specific therapy.  相似文献   

20.
Human embryonal carcinoma (EC) cells represent the stem cells of testicular germ cell tumours (TGCTs) and are morphologically, antigenically and functionally related to the stem cells of early mammalian embryos. Despite the large capacity for differentiation displayed by TGCT stem cells, little is known of the factors controlling their developmental potency. We have analyzed the differentiation elicited in NT2D1 human embryonal carcinoma (EC) cells by Bone Morphogenetic Proteins (BMPs) and compared it with that elicited by retinoic acid (RA). We have found that while RA induced expression of neuronal, endodermal and epithelial markers in NT2D1 human EC cells, treatment with BMPs resulted in a predominantly epithelial phenotype. We also provide evidence to suggest that at least some of the effects elicited by RA in human EC cells might be mediated through RA-induced expression of BMP-7. Thus BMPs may play an important role in specifying the type of differentiation arising from human multipotent stem cells. The manipulation of BMP signalling in human embryonic multipotent stem cells may therefore prove a useful approach in attempts to generate specific differentiated cell types in vitro, and loss of the malignant and/or transformed phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号