首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatase inhibition by bioavailable methylated flavones   总被引:2,自引:0,他引:2  
Previous studies have shown chrysin, 7-hydroxyflavone and 7,4'-dihydroxyflavone to be the most potent flavonoid inhibitors of aromatase. However, very poor oral bioavailability is a major limitation for the successful use of dietary flavonoids as chemopreventive agents. We have recently shown that methylated flavones, including 5,7-dimethoxyflavone, 7-methoxyflavone and 7,4'-dimethoxyflavone, are much more resistant to metabolism than their unmethylated analogs and have much higher intestinal absorption. In this study, we examined these fully methylated flavones as potential aromatase inhibitors for the prevention and/or treatment of hormone-dependent cancers. Whereas 5,7-dimethoxyflavone had poor effect compared to its unmethylated analog chrysin, 7-methoxyflavone and 7,4'-dimethoxyflavone were almost equipotent to their unmethylated analogs with IC(50) values of 2-9 microM. Thus, some fully methylated flavones appear to have great potential as cancer chemopreventive/chemotherapeutic agents.  相似文献   

2.
Flavonoids are commonly found in fruit and vegetables and have been shown to reach concentrations of several micromolars in human blood plasma. Flavonoids are also believed to have cancer chemoprotective properties. One hypothesis is that flavonoids are able to initiate apoptosis, especially in cancer cells, via a Ca(2+)-dependent mitochondrial pathway. This pathway can be activated through an exaggerated elevation of cytosolic [Ca(2+)], and sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA) play an essential role in ameliorating such changes. In this study, we demonstrate that flavonoids (especially flavones) can inhibit the activity of Ca(2+)-ATPases isoforms SERCA1A and SERCA2B in the micromolar concentration range. Of the 25 flavonoids tested, 3,6-dihydroxyflavone (IC(50), 4.6 microM) and 3,3',4',5,7-pentahydroxyflavone (quercetin) (IC(50), 8.9 microM) were the most potent inhibitors. We show that polyhydroxylation of the flavones are important for inhibition, with hydroxylation at position 3 (for SERCA1A) and position 6 (for SERCA2B) being particularly relevant.  相似文献   

3.
The antioxidative properties of five prenylated flavonoids, including new flavanone (2), from the root bark of Cudrania tricuspidata were examined against the ABTS, DPPH, and hydroxyl radicals. In most of the assays to determine their antioxidative properties, the ABTS activity was strongly correlated with DPPH because both methods are responsible for the same chemical property of hydrogen- or electron-donation to the antioxidant. On the other hand, the prenylated flavonoids (1-5) acted differently with both methods; namely, all the prenylated flavonoids strongly scavenged the ABTS radical (IC(50) < 10 microM), while they were inactive against the DPPH radical (IC(50) > 300 microM). Even though isolated 5,7,2',4',-tetrahydroxy-6,5'-diprenylflavanone (3) showed weak reducing power (746 mV) by cyclic voltammetry when compared to quercetin (394 mV), both had similar ABTS activity (IC(50) < 5 microM).  相似文献   

4.
The ability of a number of flavonoids to induce glutathione (GSH) depletion was measured in lung (A549), myeloid (HL-60), and prostate (PC-3) human tumor cells. The hydroxychalcone (2'-HC) and the dihydroxychalcones (2',2-, 2',3-, 2',4-, and 2',5'-DHC) were the most effective in A549 and HL-60 cells, depleting more than 50% of intracellular GSH within 4 h of exposure at 25 microM. In contrast, the flavones chrysin and apigenin were the most effective in PC-3 cells, depleting 50-70% of intracellular GSH within 24 h of exposure at 25 microM. In general, these flavonoids were more effective than three classical substrates of multidrug resistance protein 1 (MK-571, indomethacin, and verapamil). Prototypic flavonoids (2',5'-DHC and chrysin) were subsequently tested for their abilities to potentiate the toxicities of prooxidants (etoposide, rotenone, 2-methoxyestradiol, and curcumin). In A549 cells, 2',5'-DHC potentiated the cytotoxicities of rotenone, 2-methoxyestradiol, and curcumin, but not etoposide. In HL-60 and PC-3 cells, chrysin potentiated the cytotoxicity of curcumin, cytotoxicity that was attenuated by the catalytic antioxidant manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). Assessments of mitochondrial GSH levels mitochondrial membrane potential and cytochrome c release showed that the potentiation effects induced by 2',5'-DHC and chrysin involve mitochondrial dysfunction.  相似文献   

5.
Many flavonoids have been shown to possess prooxidant properties, capable of causing oxidative stress, especially at larger doses. Here, we examined the potential cell toxicity caused by exposure to the hydroxylated flavones chrysin, apigenin, luteolin and quercetin in comparison to the methylated flavones 5,7-dimethoxyflavone and 3',4'-dimethoxyflavone in normal Rainbow trout hepatocytes. The hydroxylated flavones, especially chrysin, demonstrated cell toxicity and inhibition of DNA synthesis at very low (2 microM) concentrations. The cytotoxicity of chrysin may partially be due to its metabolism by myeloperoxidase, which was shown to be present in these normal trout liver cells (164pmol/(min mg protein)). In contrast, methylated flavones showed no significant metabolism by myeloperoxidase and no signs of toxicity, even at much higher concentrations. These results may be useful for further investigations of cytotoxicity of dietary flavonoids.  相似文献   

6.
Kristan K  Krajnc K  Konc J  Gobec S  Stojan J  Rizner TL 《Steroids》2005,70(10):694-703
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100 microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100 microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1 microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone all had IC(50) values between 1 and 5 microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.  相似文献   

7.
The inhibitory effects of 15 flavonoids on animal fatty acid synthase (FAS, EC 2.3.1.85) were investigated, and 9 of them were found to inhibit FAS with IC(50) (the inhibitor concentration inhibiting 50% of the activity of FAS) values ranging from 2 to 112 microM. A structure-activity relationship study showed that the flavonoids containing two hydroxyl groups in the B ring and 5,7-hydroxyl groups in the A ring in combination with a C-2, 3 double bond were the most inhibitory. Morin (IC(50) = 2.33 +/- 0.09 microM) was further investigated kinetically to detail the inhibitory mechanism. The results showed that morin inhibited the overall reaction of FAS competitively with Ac-CoA, noncompetitively with Mal-CoA and in a mixed manner with NADPH. The study indicated that morin bound reversibly to the beta-ketoacyl synthase domain of FAS to inhibit the elongation of the saturated acyl groups in fatty acids synthesis.  相似文献   

8.
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone, all had IC(50) values between 1 and 5microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.  相似文献   

9.
We previously reported that oral administration of luteolin can inhibit serum tumor necrosis factor (TNF)-alpha production and several inflammatory and allergic models. We investigated here the effect of various flavonoids which resemble luteolin in structure. Lipopolysaccharide (LPS)-induced TNF-alpha production from macrophages was inhibited by treatment with flavone (luteolin, apigenin, and chrysin), flavonol (quercetin and myricetin), flavanonol (taxifolin), and anthocyanidin (cyanidin chloride) in vitro. Most of these, however, did not affect mice when administered orally. Serum TNF-alpha production was inhibited only by luteolin or apigenin, and only luteolin or quercetin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema. These results suggest that the structure of luteolin: 3',4',5,7-tetrahydroxyflavone, is most suitable for the oral anti-inflammatory activity and that existence or disappearance of a hydroxy group may cause a loss of efficiency.  相似文献   

10.
Src homology-2 (SH2) domains are noncatalytic motifs containing approximately 100 amino acid residues that are involved in intracellular signal transduction. The phosphotyrosine-containing tetrapeptide pTyr-Glu-Glu-Ile (pYEEI) binds to Src SH2 domain with high affinity (K(d)=100 nM). The development of five classes of tetrapeptides as inhibitors for the Src SH2 domain is described. Peptides were prepared via solid-phase peptide synthesis and tested for affinity to Src SH2 domain using a fluorescence polarization based assay. All of the N-terminal substituted pYEEI derivatives (class II) presented binding affinity (IC(50)=of 2.7-8.6 microM) comparable to pYEEI (IC(50)=6.5 microM) in this assay. C-Terminal substituted pYEEI derivatives (class III) showed a lower binding affinity with IC(50) values of 34-41 microM. Amino-substituted phenylalanine derivatives (class IV) showed weak binding affinities (IC(50)=16-153 microM). Other substitutions on phenyl ring (class I) or the replacement of the phenyl ring with other cyclic groups (class V) dramatically decreased the binding of tetrapeptides to Src SH2 (IC(50)>100 microM). The ability of pYEEI and several of the tetrapeptides to inhibit the growth of cancer cells were assessed in a cell-based proliferation assay in human embryonic kidney (HEK) 293 tumor cells. The binding affinity of several of tested compounds against Src SH2 domain correlates with antiproliferative activity in 293T cells. None of the compounds showed any significant antifungal activity against Candida albicans ATCC 14053 at the maximum tested concentration of 10 microM. Overall, these results provided the structure-activity relationships for some FEEI and YEEI derivatives designed as Src SH2 domain inhibitors.  相似文献   

11.
Nucleoside analogs are important in the treatment of hematologic malignancies, solid tumors, and viral infections. Their metabolism to the triphosphate form is central to their chemotherapeutic efficacy. Although the nucleoside kinases responsible for the phosphorylation of these compounds have been well described, the nucleotidases that may mediate drug resistance through dephosphorylation remain obscure. We have cloned and characterized a novel human cytosolic 5'-nucleotidase (cN-I) that potentially may have an important role in nucleoside analog metabolism. It is expressed at a high level in skeletal and heart muscle, at an intermediate level in pancreas and brain, and at a low level in kidney, testis, and uterus. The recombinant cN-I showed high affinity toward dCMP and lower affinity toward AMP and IMP. ADP was necessary for maximal catalytic activity. Expression of cN-I in Jurkat and HEK 293 cells conferred resistance to 2-chloro-2'-deoxyadenosine, with a 49-fold increase in the IC(50) in HEK 293 and a greater than 400-fold increase in the IC(50) in Jurkat cells. Expression of cN-I also conferred a 22-fold increase in the IC(50) to 2',3'-difluorodeoxycytidine in HEK 293 cells and an 82-fold increase in the IC(50) to 2',3'-dideoxycytidine in Jurkat cells. These data indicate that cN-I may play an important role in the regulation of physiological pyrimidine nucleotide pools and may also alter the therapeutic efficacy of certain nucleoside analogs.  相似文献   

12.
The use of dietary flavonoids as potential chemopreventive agents is a concept of increasing interest. Recent findings indicate that methylated flavones have the advantage of increased metabolic stability. One such compound, the naturally-occurring 5,7-dimethoxyflavone (5,7-DMF), has been shown to be a potential chemopreventive agent in human cancer originating from the liver, mouth, esophagus and lung. As bioavailability is a key issue for potential in vivo effects, the tissue accumulation and biliary elimination of 5,7-DMF and its non-methylated analog chrysin were examined in a small fish model (Fundulus heteroclitus). The fish were exposed to 5,7-DMF, chrysin or vehicle control (DMSO<0.01%) in seawater for 8h. Toxicity was not observed at the 5microM exposure level. Tissues and bile were harvested and analyzed by HPLC and LC/MS for quantitation and identification of parent compound and metabolites. 5,7-DMF accumulated 20-fold to 100-fold in all tissues examined, with the highest accumulation in liver and brain, whereas chrysin was barely detectable in any tissues except the liver. The bile of chrysin-exposed fish contained very low concentrations of unchanged chrysin but high concentrations of two glucuronic acid conjugates. In the bile of 5,7-DMF-exposed fish, the parent compound was detectable in significant amounts along with glucuronic acid conjugates of O-demethylated 5,7-DMF. In conclusion, our study demonstrated high tissue accumulation and limited metabolism of 5,7-DMF compared to chrysin in vivo, making this flavone a promising chemopreventive molecule.  相似文献   

13.
Rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK), assayed using the synthetic peptide substrate, LRRASLG, is inhibited by a range of plant-derived flavonoids. In general, maximal inhibitory effectiveness (IC50 values 1 to 2 microM) requires 2,3-unsaturation and polyhydroxylation involving at least two of the three flavonoid rings. 3-Hydroxyflavone (IC50 value 4 microM), 3,5,7,2',4'-pentahydroxyflavone (IC50 = 10 microM) and 5,7,4'-trihydroxyflavone (IC50 = 7 microM) represent somewhat less active variations from this pattern. Flavonoid O-methylation or O-glycosylation greatly decreases inhibitory effectiveness, as does 2,3-saturation. Various flavonoid-related compounds, notably gossypol (IC50 = 10 microM), also inhibit cAK. Flavonoids and related compounds are in general much better inhibitors of cAK than of avian Ca(2+)-calmodulin-dependent myosin light chain kinase or of plant Ca(2+)-dependent protein kinase. Tricetin (IC50 = 1 microM) inhibits cAK in a fashion that is non-competitive with respect to both peptide substrate and ATP (Ki value 0.7 microM). When histone III-S is used as a substrate, inhibition of cAK requires much higher flavonoid concentrations.  相似文献   

14.
Potency and selectivity of aromatase inhibition are parameters which ultimately influence the therapeutic efficacy of aromatase inhibitors. This report describes an in vitro model which allows an assessment of the selectivity with which aromatase inhibitors inhibit estrogen biosynthesis. Estrogen production was stimulated by incubating adult female hamster ovarian tissue with ovine LH. The production rates of estrogens (E), testosterone (T) and progesterone (P) were determined using radioimmunoassays to measure the amount of these steroids released into the incubation medium over a 4-hour incubation period. The selectivity of aromatase inhibition was assessed by determining the IC50S with which each inhibitor inhibited the production of E (end product), T (immediate precursor of E) and P (early precursor of E). Selectivity was studied for each of the 4 aromatase inhibitors, CGS 16949A (a new non-steroidal compound), 4-OH-androstenedione, aminoglutethimide and testolactone. CGS 16949A was the most potent of the four, followed by 4-OH-androstenedione, aminoglutethimide and testolactone. As far as selectivity was concerned, both CGS 16949A and 4-OH-androstenedione selectively inhibited aromatase judging from the IC50s for E and P production (CGS 16949A: IC50 for E & P = 0.03 & 160 microM, resp.; 4-OH-androstenedione: IC50 for E & P = 0.88 & greater than or equal to 330 microM, resp.). Aminoglutethimide was the least selective inhibitor of aromatase (IC50 for E & P = 13 & 60 microM, resp.). For testolactone, the least potent of the four (IC50 for E = 130 microM), no conclusive data were obtained concerning the selectivity of aromatase inhibition. Thus a simple, effective and reproducible method is described for assessing the selectivity with which aromatase inhibitors inhibit aromatase.  相似文献   

15.
Na(+)/Ca(2+) exchangers (NCXs) and members of the canonical transient receptor potential (TRPC) channels play an important role in Ca(2+) homeostasis in heart and brain. With respect to their overlapping expression and their role as physiological Ca(2+) influx pathways a functional discrimination of both mechanisms seems to be necessary. Here, the effect of the reverse-mode NCX inhibitor KB-R7943 was investigated on different TRPC channels heterologously expressed in HEK293 cells. In patch-clamp recordings KB-R7943 potently blocked currents through TRPC3 (IC(50)=0.46 microM), TRPC6 (IC(50)=0.71 microM), and TRPC5 (IC(50)=1.38 microM). 1-Oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry was nearly completely suppressed by 10 microM KB-R7943 in TRPC6-transfected cells. Thus, KB-R7943 is able to block receptor-operated TRP channels at concentrations which are equal or below those required to inhibit reverse-mode NCX activity. These data further suggest that the protective effects of KB-R7943 in ischemic tissue may, at least partly, be due to inhibition of TRPC channels.  相似文献   

16.
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABAA receptors following their prolonged exposure to drugs. Exposure (48 h) of human embryonic kidney (HEK) 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM) enhanced the maximum number (Bmax) of [3H]flunitrazepam binding sites without affecting their affinity (Kd). The flumazenil-induced enhancement in Bmax was not counteracted by diazepam (1 microM). GABA (1 nM-1 mM) enhanced [3H]flunitrazepam binding to membranes obtained from control and flumazenil-pretreated cells in a concentration-dependent manner. No significant differences were observed in either the potency (EC50) or efficacy (Emax) of GABA to potentiate [3H]flunitrazepam binding. However, in flumazenil pretreated cells the basal [3H]flunitrazepam and [3H]TBOB binding were markedly enhanced. GABA produced almost complete inhibition of [3H]TBOB binding to membranes obtained from control and flumazenil treated cells. The potencies of GABA to inhibit this binding, as shown by a lack of significant changes in the IC50 values, were not different between vehicle and drug treated cells. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (in the presence of GABA) up-regulates benzodiazepine and convulsant binding sites, but it does not affect the allosteric interactions between these sites and the GABA binding site. Further studies are needed to elucidate these phenomena.  相似文献   

17.
Ketoconazole, an imidazole antimycotic drug, inhibits steroid biosynthesis in adrenal and testicular tissue by blocking cytochrome P-450 dependent enzymes. To study the effect of ketoconazole on steroid biosynthesis in the human ovary we incubated human ovarian tissue (mainly theca cells) or granulosa cells with radiolabeled precursors and increasing concentrations of ketoconazole. After incubation, steroids were extracted and separated by thin layer chromatography (TLC). Activity of C17,20-desmolase and aromatase was estimated by measuring the amount of their radioactive products with liquid scintillation counting. After incubation of ovarian tissue with [3H]17-hydroxyprogesterone the production of [3H]androstenedione was reduced by increasing concentrations of ketoconazole (0-200 microM) to a minimum of 31% of basal production. This indicates a strong inhibition of ovarian C17,20-desmolase by ketoconazole with a 50% inhibiting concentration (IC50) of 23 microM. After incubation of human granulosa cells with ketoconazole (0-2000 microM) and [3H]androstenedione the production of [3H]estrone and [3H]estradiol was suppressed to minimally 37 and 35% of basal values, indicating a significant inhibition of ovarian aromatase. IC50-values were 105 microM ketoconazole for estradiol and 130 microM for estrone. In conclusion, ketoconazole was shown to inhibit human ovarian C17,20-desmolase and aromatase in vitro. As in human adrenals and testes ovarian C17,20-desmolase seems to be most sensitive to the inhibitory effect of ketoconazole.  相似文献   

18.
Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase   总被引:2,自引:0,他引:2  
Various flavonoids were found to be relatively selective inhibitors of arachidonate 5-lipoxygenase which initiates the biosynthesis of leukotrienes with the activity of slow reacting substance of anaphylaxis. Cirsiliol (3',4',5-trihydroxy-6,7-dimethoxyflavone) was most potent, and the enzyme partially purified from rat basophilic leukemia cells was inhibited by 97% at a concentration of 10 microM (IC50, about 0.1 microM). 12-Lipoxygenases from bovine platelets and porcine leukocytes were also inhibited but at higher concentrations (IC50, about 1 microM), and fatty acid cyclooxygenase purified from bovine vesicular gland was scarcely affected. The compound at 10 microM suppressed by 99% the immunological release of slow reacting substance of anaphylaxis from passively sensitized guinea pig lung (IC50, about 0.4 microM).  相似文献   

19.
Jo SH  Hong HK  Chong SH  Choe H 《Life sciences》2008,82(5-6):331-340
Protriptyline, a tricyclic antidepressant for psychiatric disorders, can induce prolonged QT, torsades de pointes, and sudden death. We studied the effects of protriptyline on human ether-à-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells. Protriptyline induced a concentration-dependent decrease in current amplitudes at the end of the voltage steps and HERG tail currents. The IC(50) for protriptyline block of HERG current in Xenopus oocytes progressively decreased relative to the degree of depolarization, from 142.0 microM at -40 mV to 91.7 microM at 0 mV to 52.9 microM at +40 mV. The voltage dependence of the block could be fit with a monoexponential function, and the fractional electrical distance was estimated to be delta=0.93. The IC(50) for the protriptyline-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 1.18 microM at +20 mV. Protriptyline affected channels in the activated and inactivated states, but not in the closed states. HERG blockade by protriptyline was use-dependent, exhibiting a more rapid onset and a greater steady-state block at higher frequencies of activation. Our findings suggest that inhibition of HERG currents may contribute to the arrhythmogenic side effects of protriptyline.  相似文献   

20.
We synthesized a water soluble Fe(III)-salen complex and investigated its biochemical effects on DNA in vitro and on cultured human cells. We showed that Fe(III)-salen produces free radicals in the presence of reducing agent dithiothreitol (DTT) and induces DNA damage in vitro. Interestingly, upon treatment with Fe(III)-salen at concentration as low as 10microM, HEK293 human cells showed morphological changes, nuclear fragmentation, and nuclear condensation that are typical features of apoptotic cell death. The cytotoxicity measurement showed that IC(50) of Fe(III)-salen is 2.0microM for HEK293 cells. Furthermore, treatment with Fe(III)-salen resulted in translocation of cytochrome c from mitochondria to cytosol affecting mitochondrial membrane permeability. Our results demonstrated that Fe(III)-salen not only damages DNA in vitro, but also induces apoptosis in human cells via mitochondrial pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号