首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The conservation genetics of bees is of particular interest because many bee species are in decline, so jeopardizing the essential ecosystem service of plant pollination that they provide. In addition, as social haplodiploids, inbred bees may be vulnerable to the extra genetic load represented by the production of sterile diploid males. Using microsatellite markers, we investigated the genetic structure of populations of the Great Yellow Bumblebee (Bombus distinguendus Morawitz) in the UK, where this species has undergone a precipitous decline. By means of a mixture of analytical methods and simulation, we also extended—and then applied—genetic methods for estimating foraging distance and nest density in wild bees. B. distinguendus populations were characterized by low expected heterozygosity and allelic richness, inbreeding coefficients not significantly different from zero, absence of detected diploid males, absence of substantial demographic bottlenecking, and population substructuring at large (c. 100+ km) but not small (10s of km) spatial scales. The minimum average effective population size at our sampling sites was low (c. 25). In coastal grassland (machair), the estimated modal foraging distance of workers was 391 m, with 95% of foraging activity occurring within 955 m of the nest, and estimated nest density was 19.3 nests km‐2. These findings show that B. distinguendus exhibits some genetic features of scarce, declining or fragmented populations. Moreover, B. distinguendus workers appear to forage over above‐average distances and nests remain thinly distributed even in current strongholds. These considerations should inform future conservation actions for this and similar species.  相似文献   

3.
4.
    
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum using up to six microsatellite loci. We estimated mating frequency by genotyping 79 dealate (colony) queens and the contents of their sperm receptacles and by detailed genetic analysis of 11 monogynous (single-queen) and nine polygynous colonies. Results indicated that 95% of queens were singly mated and 5% of queens were doubly mated. The corrected population mean mating frequency was 1.06. Parentage analysis of adults and brood in 17 colonies (10 monogynous, 7 polygynous) showed that female offspring attributable to each of 31 queens were full sisters, confirming that queens typically mate once. Inbreeding coefficients, queen-mate relatedness of zero and the low incidence of diploid males provided evidence that L. acervorum sexuals mate entirely or almost entirely at random. Males mated to queens in the same polygynous colony were not related to one another. Our data also confirmed that polygynous colonies contain queens that are related on average and that their workers had a mixed maternity. We conclude that the mating system of L. acervorum involves queens that mate near nests with unrelated males and then seek readoption by those nests, and queens that mate in mating aggregations away from nests, also with unrelated males.  相似文献   

5.
6.
    
1. Size variations in pollinator populations may modify competitive interactions among foragers. Competition among pollinators has been shown to lead to one of two contrasting behaviours: either specialisation to the most profitable plant species or generalisation to several species. When foraging, pollinators are also confronted with heterogeneity in the spatial distribution of plant resources. Because variations in both the forager density and plant spatial distribution can affect pollinator behaviour, focus was on the interactive effect of these two factors. 2. Bumble bee (Bombus terrestris L.) individuals were trained on a focal species (Lotus corniculatus L.) and experimentally tested whether variations in the forager density (two or six bumble bees foraging together), plant community spatial distribution (two plant species: L. corniculatus and Medicago sativa, which were either patchily or randomly distributed), and their interaction modified bumble bee foraging behaviour. 3. It was shown that when confronted with a high forager density, bumble bees focused their visits towards the most familiar species, especially when foraging under a random plant distribution. These modifications affected the fruiting of the focal plant species, with a significantly lower reproductive success under low density/patchy conditions. 4. This study demonstrates that the foraging decisions of bumble bees are influenced by variations in both the conspecific density and plant spatial distribution. Given the increasing impact of human activities on plant‐pollinator communities, this raises the question of the potential implications of these results for plant communities in natural conditions when confronted with variations in the pollinator density and spatial distribution of plants.  相似文献   

7.
8.
9.
10.
    
The termite Mastotermes darwiniensis is the sole extant member of its family and occupies the basal position in the phylogeny of the eusocial order Isoptera. In this study, we investigated the micro- and macrogeographic genetic structure of M. darwiniensis in its native range in Australia. A total of 1591 workers were sampled from 136 infested trees in 24 locales. Each locale was separated by 2-350 km, and these locales were found within two broader geographic regions approximately 1500 km apart. The multilocus genotypes of all termites were assayed at six polymorphic microsatellite loci. The genetic data indicated that colonies typically fed on multiple trees within locales and extended over linear distances of up to 320 m. Single colonies were frequently headed by multiple reproductives. Workers were highly related (r = 0.40) and substantially inbred (f = 0.10). Thus, M. darwiniensis colonies are characterized by the input of alleles from multiple reproductives, which sometimes engage in consanguineous matings. Our analyses of population genetic structure above the level of the colony indicated that locales and regions were significantly differentiated (theta(locale) = 0.50, theta(region) = 0.37). Moreover, locales showed a pattern of genetic isolation by distance within regions. Thus, M. darwiniensis populations display restricted gene flow over moderate geographic distances. We suggest that the genetic patterns displayed by M. darwiniensis result primarily from selective pressures acting to maintain high relatedness among colonymates while allowing colonies to grow rapidly and dominate local habitats.  相似文献   

11.
  总被引:1,自引:0,他引:1  
The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.  相似文献   

12.
Interval timing--sensitivity to elapsing durations--has recently been found to occur in an invertebrate pollinator, the bumble-bee (Bombus impatiens). Here, bumble-bees were required to time the interval between the start of foraging in a patch of low-quality artificial flowers providing 25% sucrose and the availability of a high-quality flower (HQF) that provided 50% sucrose after a fixed delay. The delay changed after every 20 foraging bouts in the order 30-150-30 s. Bees visited the HQF sooner when the delay was 30 s than when it was 150 s, and visits to the HQF peaked near the end of both delays. When the delay changed to 150 s, bees appeared to time both the previous 30 s delay and the new delay. To examine whether bees also learned what kind of reward was provided at the HQF, its usual reward was replaced with 25% sucrose in a final foraging bout. Bumble-bees rejected the HQF on the reward-replacement test. These results show that bumble-bees remembered both when reward was produced by the HQF and what type of reward was produced. These findings indicate that bumble-bees can learn both the timing and content of reward production.  相似文献   

13.
Dispersal ability is a key determinant of the propensity of an organism to cope with habitat fragmentation and climate change. Here we quantify queen dispersal in two common bumblebee species in an arable landscape. Dispersal was measured by taking DNA samples from workers in the spring and summer, and from queens in the following spring, at 14 sites across a landscape. The queens captured in the spring must be full sisters of workers that were foraging in the previous year. A range of sibship reconstruction methods were compared using simulated data sets including or no genotyping errors. The program Colony gave the most accurate reconstruction and was used for our analysis of queen dispersal. Comparison of queen dispersion with worker foraging distances was used to take into account an expected low level of false identification of sister pairs which might otherwise lead to overestimates of dispersal. Our data show that Bombus pascuorum and B. lapidarius queens can disperse by at least 3 and 5 km, respectively. These estimates are consistent with inferences drawn from studies of population structuring in common and rare bumblebee species, and suggest that regular gene flow over several kilometres due to queen dispersal are likely to be sufficient to maintain genetic cohesion of ubiquitous species over large spatial scales whereas rare bumblebee species appear unable to regularly disperse over distances greater than 10 km. Our results have clear implications for conservation strategies for this important pollinator group, particularly when attempting to conserve fragmented populations.  相似文献   

14.
Conspecifics are usually considered competitors negatively affecting food intake rates. However, their presence can also inform about resource quality by providing inadvertent social information. Few studies have investigated whether foragers perceive conspecifics as informers or competitors. Here, we experimentally tested whether variation in the density of demonstrators ('none', 'low' and 'high'), whose location indicated flower profitability, affected decision-making of bumble-bees Bombus terrestris. Bumble-bees foraged on either 'simple' (two colours) or 'complex' (four colours) artificial floral communities. We found that conspecifics at low density may be used as sources of information in first flower choices, whereas they appeared as competitors over the whole foraging sequence. Low conspecific densities improved foragers' first-visit success rate in the simple environment, and decreased time to first landing, especially in the complex environment. High conspecific densities did not affect these behavioural parameters, but reduced flower constancy in both floral communities, which may alter the efficiency of pollinating visits. These results suggest that the balance of the costs and benefits of conspecific presence varies with foraging experience, floral community and density. Spatio-temporal scales could thus be an important determinant of social information use. This behavioural flexibility should allow bumble-bees to better exploit their environment.  相似文献   

15.
1.  There are myriad ways in which pollinators and herbivores can interact via the evolutionary and behavioural responses of their host plants.
2.  Given that both herbivores and pollinators consume and are dependent upon plant-derived nutrients and secondary metabolites, and utilize plant signals, plant chemistry should be one of the major factors mediating these interactions.
3.  Here we build upon a conceptual framework for understanding plant-mediated interactions of pollinators and herbivores. We focus on plant chemistry, in particular plant volatiles and aim to unify hypotheses for plant defence and pollination. We make predictions for the evolutionary outcomes of these interactions by hypothesizing that conflicting selection pressures from herbivores and pollinators arise from the constraints imposed by plant chemistry.
4.  We further hypothesize that plants could avoid conflicts between pollinator attraction and herbivore defence through tissue-specific regulation of pollinator reward chemistry, as well as herbivore-induced changes in flower chemistry and morphology.
5.  Finally, we test aspects of our predictions in a case study using a wild tomato species, Solanum peruvianum , to illustrate the diversity of tissue-specific and herbivore-induced differences in plant chemistry that could influence herbivore and pollinator behaviour, and plant fitness.  相似文献   

16.
17.
    
1. Social insect castes and sexes differ in many ways, including morphology, behavior, and sometimes ploidy level. Recent studies have found that consuming sunflower pollen reduces the gut pathogen Crithidia bombi in workers of the common eastern bumble bee (Bombus impatiens). Here, this work is extended to the reproductive individuals that represent colony fitness – males and queens – to assess if the medicinal effects of sunflower pollen vary with bee caste and sex. 2. This study examined the effect of sunflower pollen compared to a diverse wildflower pollen mix on infection in worker, male, and daughter queen commercial B. impatiens. Bees were infected, fed either sunflower pollen or wildflower pollen for 7 days, and then infection levels were assessed. 3. Compared to wildflower pollen, sunflower pollen dramatically reduced Crithidia infection in workers and daughter queens, but not males. Infection levels were very low for both diets in males; this could be due to low pollen consumption or other mechanisms. 4. Reducing Crithidia infection in young queens before they undergo hibernation is important for population dynamics since infected queens are less likely to survive hibernation, and those that do are less likely to successfully establish a nest the following spring. Because sunflowers bloom in late summer when new queens are emerging, sunflowers could provide an important dietary component for queens during this critical life stage. Deepening our understanding of how diet impacts pathogens in reproductive bees, as well as workers, is crucial to maintain healthy pollinator populations.  相似文献   

18.
The northern hairy-nosed (NHN) wombat is perhaps Australia's most endangered mammal. Being fossorial and nocturnal as well as rare, NHN wombats are difficult to observe in the wild. Hence little is known of their social biology, such as their mating and dispersal systems. A hypothesis has been advanced that adult females of the species disperse post-breeding, leaving their young to inhabit the natal burrow. Female-biased dispersal is expected to result in higher relatedness amongst males in a burrow cluster than amongst females in a burrow cluster. The usefulness of a panel of microsatellite markers in estimating the relatedness structure, and in reconstructing pedigrees for, the sole known population of NHN wombats was assessed. Microsatellite genotypes at eight or nine loci were obtained from 58 of the 85 known individuals, and used to estimate pairwise individual relatedness using Queller & Goodnight's (1989) RELATEDNESS 4.2. Our analysis gave the unexpected result that both males and females were significantly more closely related to their same-sex burrow cluster mates than random, while opposite-sex animals sharing burrows were only slightly (nonsignificantly) more related than random. This raises the possibility of dispersal patterns which lead to association of same-sex relatives. The observed relatedness structure is not expected to make likely a high incidence of inbred matings, as close relatives of the opposite sex are not significantly associated in space. Parentage analysis was attempted using genetic exclusion and LOD likelihood ratios, but proved difficult because of low genetic variation, incomplete sampling of potential parents, and paucity of ecological data such as known mother/offspring pairs and ages of individuals.  相似文献   

19.
    
1. Workers in several bee species travel to conspecific nests (‘drifting’), enter them, and produce male offspring inside them, so acting as intra‐specific social parasites. This adds a new dimension to bees' reproductive behaviour and spatial ecology, but the extent to which drifting occurs over field scales, i.e. at natural nest densities in field conditions, has been unclear. 2. Using the bumble bee Bombus terrestris (Linnaeus) as a model system, we sought to determine rates of worker drifting at field scales and the frequency of potential drifter workers in wild nests. 3. A field experiment with 27 colonies showed that workers travelled to, and became accepted in, conspecific nests that were up to 60 m away, although the number of accepted drifter workers within nests fell significantly with distance. The rate at which nests were entered by drifters was relatively high and significantly exceeded the rate at which drifters became accepted. 4. Microsatellite genotyping of eight field‐collected nests from Greater London, U.K., showed that a low frequency (3%) of workers were not full sisters of nestmate workers and hence were likely to have been drifter workers. 5. It is therefore concluded that workers can drift to conspecific nests over field scales and confirmed that successful drifting occurs in natural populations. Drifting appears to be a natural but low‐frequency behaviour permitting B. terrestris workers to gain direct fitness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号