首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Size variations in pollinator populations may modify competitive interactions among foragers. Competition among pollinators has been shown to lead to one of two contrasting behaviours: either specialisation to the most profitable plant species or generalisation to several species. When foraging, pollinators are also confronted with heterogeneity in the spatial distribution of plant resources. Because variations in both the forager density and plant spatial distribution can affect pollinator behaviour, focus was on the interactive effect of these two factors. 2. Bumble bee (Bombus terrestris L.) individuals were trained on a focal species (Lotus corniculatus L.) and experimentally tested whether variations in the forager density (two or six bumble bees foraging together), plant community spatial distribution (two plant species: L. corniculatus and Medicago sativa, which were either patchily or randomly distributed), and their interaction modified bumble bee foraging behaviour. 3. It was shown that when confronted with a high forager density, bumble bees focused their visits towards the most familiar species, especially when foraging under a random plant distribution. These modifications affected the fruiting of the focal plant species, with a significantly lower reproductive success under low density/patchy conditions. 4. This study demonstrates that the foraging decisions of bumble bees are influenced by variations in both the conspecific density and plant spatial distribution. Given the increasing impact of human activities on plant‐pollinator communities, this raises the question of the potential implications of these results for plant communities in natural conditions when confronted with variations in the pollinator density and spatial distribution of plants.  相似文献   

2.
1. Resource pulses, narrow periods of high resource availability, can elicit strong behavioural responses across diverse taxa. Mass‐flowering agricultural crops are an example of a resource pulse that insect pollinators exploit. However, the underlying mechanism behind changes in pollinator behaviour associated with mass‐flowering crops is still relatively unexplored. 2. The present study quantified the behavioural response of bumble bees, an important wild pollinator, to commercial cranberry bloom, an important mass‐flowering crop in Wisconsin, U.S.A. Over a 2‐year period, foraging trip duration was measured using radio frequency identification at 14 farms situated across landscape contexts, ranging from high to low natural area (woodland amount). Using transect surveys, floral resource abundance at a landscape scale was estimated. 3. It was found that bumble bees were highly sensitive to temporal changes in landscape‐level resource abundance associated with the onset of cranberry bloom, during which they decreased foraging trip duration by 22% and increased the number of foraging trips during bloom by 24% on average relative to the period before and after bloom. This phenomenon was consistent across colonies, individual bees, and landscape contexts, despite a higher abundance of flowers in low woodland landscapes. Bumble bee colonies growing in low‐ and high‐woodland landscapes exhibited a similar performance. 4. As mass‐flowering crops are probably a factor influencing bumble bee foraging behaviour in agricultural regions, investigations should continue into how variable resource landscapes, particularly those offering resource pulses, affect wild pollinators and the pollination services they provide.  相似文献   

3.
4.
1. Understanding the roles of habitat fragmentation and resource availability in shaping animal movement are integral for promoting species persistence and conservation. For insects such as bumble bees, their movement patterns affect the survival and reproductive potential of their colonies, as well as the pollen flow of plant species. However, the understanding of their mobility or the impact of putative barriers in natural environments is limited due to the technical difficulties of studying wild populations. 2. Genetic mark–recapture was used to estimate the foraging distance, resource use, and site connectivity of two bumble bee species in a montane meadow complex composed of open meadows within a matrix of forest. 3. There was no evidence that forests or changes in landcover function as barriers to the fine-scale movement for either species. Substantially greater colony-specific foraging distances were found for Bombus vosnesenskii (maximum: 1867 m) compared to Bombus bifarius (maximum: 362 m). Despite this difference in absolute range, both species were detected across putative forest barriers at frequencies expected by uninhibited movement. Siblings separated by greater distances were more likely to be foraging on different floral species, potentially suggesting a resource-based motivation for movement. 4. These results suggest that bumble bee foraging patterns are influenced by species-specific differences in movement capacity, with little influence of matrix composition between resource patches. They also support the perspective that habitat conservation for bumble bees should prioritise providing abundant and diverse patches of resources within species-specific movement radii with less emphasis on matrix composition.  相似文献   

5.
The conservation genetics of bees is of particular interest because many bee species are in decline, so jeopardizing the essential ecosystem service of plant pollination that they provide. In addition, as social haplodiploids, inbred bees may be vulnerable to the extra genetic load represented by the production of sterile diploid males. Using microsatellite markers, we investigated the genetic structure of populations of the Great Yellow Bumblebee (Bombus distinguendus Morawitz) in the UK, where this species has undergone a precipitous decline. By means of a mixture of analytical methods and simulation, we also extended—and then applied—genetic methods for estimating foraging distance and nest density in wild bees. B. distinguendus populations were characterized by low expected heterozygosity and allelic richness, inbreeding coefficients not significantly different from zero, absence of detected diploid males, absence of substantial demographic bottlenecking, and population substructuring at large (c. 100+ km) but not small (10s of km) spatial scales. The minimum average effective population size at our sampling sites was low (c. 25). In coastal grassland (machair), the estimated modal foraging distance of workers was 391 m, with 95% of foraging activity occurring within 955 m of the nest, and estimated nest density was 19.3 nests km‐2. These findings show that B. distinguendus exhibits some genetic features of scarce, declining or fragmented populations. Moreover, B. distinguendus workers appear to forage over above‐average distances and nests remain thinly distributed even in current strongholds. These considerations should inform future conservation actions for this and similar species.  相似文献   

6.
Different characters of an organism may be correlated if genes control the allometric relationship between them. If genetic variation exists for such genes then the allometric relation itself is potentially subject to change by selection. In social insects allometric relations represent colony-level characters. If colonies differ in these relations and this variation leads to differential productivity among colonies, then selection on allometric relations can operate at the level of the colony. We assessed the extent of heritable, between-colony variation for the allometric coefficients relating proboscis ( = glossa) length to wing length for two bumble bee species (Bombus huntii and B. occidentalis). We found that in both species colonies did not differ significantly in slope (b) but did differ significantly in intercept (a) of the regression of glossa length on wing length. Within-colony variation of the intercept was estimated by randomly constituting groups of five workers from each colony and calculating the regression for each group. The intraclass correlation was then calculated from the between- and within-colony mean squares. We found significant intraclass correlations in both species, giving heritabilities of 0.5 ± 0.3 in B. hunti and 0.7 ± 0.3 in B. occidentalis. If this allometric relation affects colony foraging success and foraging environments vary geographically, then the intercept should exhibit corresponding geographic variation. We tested this prediction by comparing intercepts calculated using wild-caught B. vagans workers from Alberta, Ontario and Maine. We found that the intercepts did differ significantly between sites, with the bees from Alberta having a significantly smaller intercept than the bees from eastern North America. Our results illustrate the opportunity for selection on an allometric relation that directly affects the foraging success of individual bumble bee colonies.  相似文献   

7.
Interspecific differences in traits can alter the relative niche use of species within the same environment. Bats provide an excellent model to study niche use because they use a wide variety of behavioral, acoustic, and morphological traits that may lead to multi‐species, functional groups. Predatory bats have been classified by their foraging location (edge, clutter, open space), ability to use aerial hawking or substrate gleaning and echolocation call design and flexibility, all of which may dictate their prey use. For example, high frequency, broadband calls do not travel far but offer high object resolution while high intensity, low frequency calls travel further but provide lower resolution. Because these behaviors can be flexible, four behavioral categories have been proposed: (a) gleaning, (b) behaviorally flexible (gleaning and hawking), (c) clutter‐tolerant hawking, and (d) open space hawking. Many recent studies of diet in bats use molecular tools to identify prey but mainly focus on one or two species in isolation; few studies provide evidence for substantial differences in prey use despite the many behavioral, acoustic, and morphological differences. Here, we analyze the diet of 17 sympatric species in the Chihuahuan desert and test the hypothesis that peak echolocation frequency and behavioral categories are linked to differences in diet. We find no significant correlation between dietary richness and echolocation peak frequency though it spanned close to 100 kHz across species. Our data, however, suggest that bats which use both gleaning and hawking strategies have the broadest diets and are most differentiated from clutter‐tolerant aerial hawking species.  相似文献   

8.
9.
We analyzed the temporal structure of visitation by bumble beeworkers to a single Penstemon strictus plant growing in an arrayof conspecifics. When tested against a null distribution usinga randomization model, the observed pattern of arrivals forthe whole group of bees was random, but departures were clusteredin time. Certain individuals visited the plant repeatedly andfrequently throughout the day. These showed significantly regulararrival and departure schedules, which were likely producedby traplining. We explored whether these more frequent and regularforagers gained a higher reward than random or incidental plantvisitors. Using an analytical model, Possingham predicted thata dominating forager that visited a simple, renewing resourcein a regular pattern would garner higher and less variable rewardsthan random visitors. Inspired by these results, but interestedin plant-level visitation, we constructed a simulation modelof resource dynamics for a multiflowered plant with high visitation.The model incorporates the observed visitation schedules ofall bees and independent reward dynamics for each flower onthe plant. We calculated the rewards that observed bees wouldhave collected given a range of resource-renewal parameters.More frequent visitors did not return to the plant when whole-plantresource levels were higher, but these visitors did get greaterrewards. Their increased reward resulted from greater foragingefficiency, primarily through selecting (on average) more rewardingflowers than those selected by less frequent, random visitors.  相似文献   

10.
11.
12.
Abstract. Bumble bee workers (Bombus bifarius, Hymenoptera: Apidae) exhibit aggression toward one another after the colony begins producing female reproductive offspring (the competition phase). Workers in competition phase colonies must continue to perform in‐nest tasks, such as nest thermoregulation, and to forage for food, to rear the reproductives to maturity. Therefore, competition phase workers are faced with potentially conflicting pressures to work for their colonies, or to compete for direct reproduction. The effects of reproductive competition on worker task performance were quantified by measuring relationships of worker body size, reproductive physiology, and aggression with their rates of task performance. If worker division of labour was strongly affected by competition, it was predicted that fecund workers would avoid performing nest maintenance and foraging tasks, focusing instead on reproductive behaviour. Furthermore, it was predicted that fecund workers would dominate their nest mates, and that subordinate workers would perform nonreproductive tasks at higher rates. Worker aggression was associated closely with direct reproductive competition. Both aggression and brood interaction rates were related positively with ooctye development. Furthermore, foraging was associated negatively with ovarian development. However, in‐nest and foraging task performance rates were not associated with social aggression. The results support a partial role for reproductive competition in worker polyethism. Although worker aggression did not directly affect polyethism, reproductively competent workers avoided foraging tasks that would remove them from egg‐laying opportunities. Reproductively competent workers did perform in‐nest tasks, suggesting that these tasks entail little cost in terms of reproductive competition.  相似文献   

13.
Recruitment patterns were investigated for the African honey bee in the Okavango River Delta, Botswana. The waggle dances of two observation colonies maintained in the field were monitored and used to construct maps of daily recruitment activity. These maps revealed that the African colonies frequently adjusted the allocation of recruits among food patches, recruited for 16–17 different food sites/day over areas of 55–80 km 2 ,and concentrated the majority of recruitment within 1 km of the hives (median foraging distances for the two colonies were 295 and 563 m). In both colonies pollen foragers were more abundant than nectar foragers, and pollen sources indicated by waggle dancers were significantly closer to the hives than nectar sources. Compared to the recruitment patterns of temperate climate colonies, the African colonies had smaller recruitment areas, smaller mean recruitment distances, and a greater emphasis on pollen foraging. These differences may be related to the contrasting survival strategies followed by tropical-versus temperate-climate honey bees.  相似文献   

14.
15.
1. Social insect castes and sexes differ in many ways, including morphology, behavior, and sometimes ploidy level. Recent studies have found that consuming sunflower pollen reduces the gut pathogen Crithidia bombi in workers of the common eastern bumble bee (Bombus impatiens). Here, this work is extended to the reproductive individuals that represent colony fitness – males and queens – to assess if the medicinal effects of sunflower pollen vary with bee caste and sex. 2. This study examined the effect of sunflower pollen compared to a diverse wildflower pollen mix on infection in worker, male, and daughter queen commercial B. impatiens. Bees were infected, fed either sunflower pollen or wildflower pollen for 7 days, and then infection levels were assessed. 3. Compared to wildflower pollen, sunflower pollen dramatically reduced Crithidia infection in workers and daughter queens, but not males. Infection levels were very low for both diets in males; this could be due to low pollen consumption or other mechanisms. 4. Reducing Crithidia infection in young queens before they undergo hibernation is important for population dynamics since infected queens are less likely to survive hibernation, and those that do are less likely to successfully establish a nest the following spring. Because sunflowers bloom in late summer when new queens are emerging, sunflowers could provide an important dietary component for queens during this critical life stage. Deepening our understanding of how diet impacts pathogens in reproductive bees, as well as workers, is crucial to maintain healthy pollinator populations.  相似文献   

16.
1. Bumble bees exhibit worker size polymorphisms; highly related workers within a colony may vary up to 10‐fold in body mass. As size variation is an important life history feature in bumble bees, the distribution of body sizes within the colony and how it fluctuates over the colony cycle were analysed. 2. Ten commercially purchased colonies of Bombus impatiens (Cresson) were reared in ad libitum conditions. The size of all workers present and newly emerging workers (callows) was recorded each week. 3. The average size of bumble bee workers did not change with colony age, but variation in body size tended to decrease over time. The average size of callows did not change with population size, but did tend to decrease with colony age. In all measures, there was considerable variation among colonies. 4. Colonies of B. impatiens usually produced workers with normally distributed body sizes throughout the colony life cycle. Unlike most polymorphic ants, there was no increase in worker body size with colony age or colony size. This provides the first, quantitative data on the ontogeny of bumble bee worker size distribution. The potential adaptive significance of this size variation is discussed.  相似文献   

17.
Foraging on resources that are fixed in space but that replenishover time, such as floral nectar and pollen, presents animalswith the problem of selecting a foraging route. What can flowervisitors such as bees do to optimize their foraging routes,that is, reduce return time or route distance? Some repeatedlyvisit a set of plants in a significantly predictable sequence(so-called "trapline foraging"), which may also enhance theirforaging efficiency. A moderate level of optimization and repetitionof foraging routes can be reached by following simple movementrules for choosing the distances and turning angles of successiveflights, without the use of spatial memory. If pollinators canlearn the locations of patches and choose among possible foragingroutes or paths, however, even better performance may be achieved.We tested whether and how bumble bees can optimize and repeattheir foraging routes in laboratory experiments with artificialflowers that secreted nectar at a constant rate. With increasingexperience, foraging routes of bees became more repeatable andefficient than expected from a combination of simple movementrules between successive flowers. We suggest that trapline foragingis a more sophisticated pattern of spatial use than searchingand is based on memory. On the other hand, certain spatial configurationsof flowers hampered optimization by the bees; bees preferredto choose short distances over straight moves and showed littleplasticity in this regard. Developing an efficient trapline,therefore, may require prior selection of a set of plants withan appropriate spatial configuration.  相似文献   

18.
Conspecifics are usually considered competitors negatively affecting food intake rates. However, their presence can also inform about resource quality by providing inadvertent social information. Few studies have investigated whether foragers perceive conspecifics as informers or competitors. Here, we experimentally tested whether variation in the density of demonstrators ('none', 'low' and 'high'), whose location indicated flower profitability, affected decision-making of bumble-bees Bombus terrestris. Bumble-bees foraged on either 'simple' (two colours) or 'complex' (four colours) artificial floral communities. We found that conspecifics at low density may be used as sources of information in first flower choices, whereas they appeared as competitors over the whole foraging sequence. Low conspecific densities improved foragers' first-visit success rate in the simple environment, and decreased time to first landing, especially in the complex environment. High conspecific densities did not affect these behavioural parameters, but reduced flower constancy in both floral communities, which may alter the efficiency of pollinating visits. These results suggest that the balance of the costs and benefits of conspecific presence varies with foraging experience, floral community and density. Spatio-temporal scales could thus be an important determinant of social information use. This behavioural flexibility should allow bumble-bees to better exploit their environment.  相似文献   

19.
20.
What rules determine whether bumble bees continue exploitingplants of the species just visited or switch to another species?To tackle this question, we recorded handling times and flighttimes from bees foraging in a natural meadow containing fiveplant species. Inter- and intra-specific plant distances werequantified. The bee-subjective colors of the five species weredetermined; two of these species had similar colors and structures,while three species were distinct from all others. The followingrules were identified: (1) The decision to switch species wascorrelated with previous flower handling time, which we assumeis a function of the reward amount received at the flower. Aftershort handling times, the probability of switching to anotherspecies increased, whereas it decreased after long handlingtimes. This difference became even greater if the bee had hada run of several short or several long handling times. (2) Constantflights (those between flowers of the same species) and transitionflights (those between flowers of different species) followedstereotyped temporal patterns independent of the distances betweenflowers. Constant flights within five plant species consistentlyhad median durations of about 2 seconds, whereas median transitiontimes between species took 3–6 seconds. (3) This temporalrule broke down, however, if the flowers of two species hadsimilar colors, in which case transition flights had equal dynamicsas constant flights. (4) Bees switched more frequently fromrare than from common species but even more frequently betweensimilar species. We conclude that the bees' choices were determinedby a set of rules that guided them to stay with the currentplant species as long as flowers were rewarding and availablewithin close distance but to switch to another species if flowersoffered low rewards or were not encountered at close range  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号